SEARCH

SEARCH BY CITATION

References

  • Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A., Grabiner, B.C., Spear, E.D., Carter, S.L., Meyerson, M. & Sabatini, D.M. (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 11001106.
  • Bar-Peled, L., Schweitzer, L.D., Zoncu, R. & Sabatini, D.M. (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 11961208.
  • Becker, J., Melchior, F., Gerke, V., Bischoff, F.R., Ponstingl, H. & Wittinghofer, A. (1995) RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae. J. Biol. Chem. 270, 1186011865.
  • Betz, C. & Hall, M.N. (2013) Where is mTOR and what is it doing there? J. Cell Biol. 203, 563574.
  • Binda, M., Peli-Gulli, M.P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W., Loewith, R. & De Virgilio, C. (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563573.
  • Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C. & De Virgilio, C. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105110.
  • Bourne, H.R., Sanders, D.A. & McCormick, F. (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125132.
  • Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J. & Heitman, J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13, 32713279.
  • Chen, H., Fan, M., Pfeffer, L.M. & Laribee, R.N. (2012) The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 40, 65346546.
  • Chien, C.T., Bartel, P.L., Sternglanz, R. & Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. USA 88, 95789582.
  • Conti, E., Muller, C.W. & Stewart, M. (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 16, 237244.
  • De Virgilio, C. & Loewith, R. (2006) The TOR signalling network from yeast to man. Int. J. Biochem. Cell Biol. 38, 14761481.
  • Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 1526.
  • Exton, J.H. (1998) Small GTPases minireview series. J. Biol. Chem. 273, 19923.
  • Funakoshi, M. & Hochstrasser, M. (2009) Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26, 185192.
  • Gong, R., Li, L., Liu, Y., Wang, P., Yang, H., Wang, L., Cheng, J., Guan, K.L. & Xu, Y. (2011) Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 16681673.
  • Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 25192524.
  • Han, J.M., Jeong, S.J., Park, M.C., Kim, G., Kwon, N.H., Kim, H.K., Ha, S.H., Ryu, S.H. & Kim, S. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410424.
  • Heitman, J., Movva, N.R. & Hall, M.N. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905909.
  • Hill, J., Donald, K.A., Griffiths, D.E. & Donald, G. (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791.
  • Hirose, E., Nakashima, N., Sekiguchi, T. & Nishimoto, T. (1998) RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J. Cell Sci. 111, 1121.
  • Ito, H., Fukuda, Y., Murata, K. & Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163168.
  • Johnson, S.C., Rabinovitch, P.S. & Kaeberlein, M. (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493, 338345.
  • Kim, J.E. & Chen, J. (2000) Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc. Natl Acad. Sci. USA 97, 1434014345.
  • Li, H., Tsang, C.K., Watkins, M., Bertram, P.G. & Zheng, X.F. (2006) Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 442, 10581061.
  • Nakashima, A., Maruki, Y., Imamura, Y., Kondo, C., Kawamata, T., Kawanishi, I., Takata, H., Matsuura, A., Lee, K.S., Kikkawa, U., Ohsumi, Y., Yonezawa, K. & Kamada, Y. (2008) The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase. PLoS ONE 3, e2223.
  • Nakashima, N., Hayashi, N., Noguchi, E. & Nishimoto, T. (1996) Putative GTPase Gtr1p genetically interacts with the RanGTPase cycle in Saccharomyces cerevisiae. J. Cell Sci. 109, 23112318.
  • Nakashima, N., Noguchi, E. & Nishimoto, T. (1999) Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853867.
  • Nishimoto, T. (2000) Upstream and downstream of ran GTPase. Biol. Chem. 381, 397405.
  • Oshiro, N., Rapley, J. & Avruch, J. (2014) Amino acids activate mTOR complex1 without changing Rag GTPase guanyl nucleotide charging. J. Biol. Chem. 289, 26582674.
  • Panchaud, N., Peli-Gulli, M.P. & De Virgilio, C. (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42.
  • Reinke, A., Anderson, S., McCaffery, J.M., Yates, J. 3rd, Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K.P. & Powers, T. (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279, 1475214762.
  • Reinke, A., Chen, J.C., Aronova, S. & Powers, T. (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 281, 3161631626.
  • Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M., Pate, E., Cooke, R., Taylor, E.W., Milligan, R.A. & Vale, R.D. (1999) A structural change in the kinesin motor protein that drives motility. Nature 402, 778784.
  • Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S. & Sabatini, D.M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290303.
  • Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L. & Sabatini, D.M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 14961501.
  • Sazer, S. & Dasso, M. (2000) The ran decathlon: multiple roles of Ran. J. Cell Sci. 113(Pt 7), 11111118.
  • Schurmann, A., Brauers, A., Massmann, S., Becker, W. & Joost, H.G. (1995) Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J. Biol. Chem. 270, 2898228988.
  • Seki, T., Hayashi, N. & Nishimoto, T. (1996) RCC1 in the Ran pathway. J. Biochem. (Tokyo) 120, 207214.
  • Sekiguchi, T., Hayashi, N., Wang, Y. & Kobayashi, H. (2008) Genetic evidence that Ras-like GTPases, Gtr1p and Gtr2p, are involved in epigenetic control of gene expression in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 368, 748754.
  • Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. & Nishimoto, T. (2001) Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276, 72467257.
  • Sekiguchi, T., Todaka, Y., Wang, Y., Hirose, E., Nakashima, N. & Nishimoto, T. (2004) A novel human nucleolar protein, Nop132, binds to the G proteins, RRAG A/C/D. J. Biol. Chem. 279, 83438350.
  • Takahara, T. & Maeda, T. (2013) Evolutionarily conserved regulation of TOR signalling. J. Biochem. 154, 110.
  • Takai, Y., Sasaki, T. & Matozaki, T. (2001) Small GTP-binding proteins. Physiol. Rev. 81, 153208.
  • Todaka, Y., Wang, Y., Tashiro, K., Nakashima, N., Nishimoto, T. & Sekiguchi, T. (2005) Association of the GTP-binding protein Gtr1p with Rpc19p, a shared subunit of RNA polymerase I and III in yeast Saccharomyces cerevisiae. Genetics 170, 15151524.
  • Valbuena, N., Guan, K.L. & Moreno, S. (2012) The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J. Cell Sci. 125, 19201928.
  • Wang, Y., Kurihara, Y., Sato, T., Toh, H., Kobayashi, H. & Sekiguchi, T. (2009) Gtr1p differentially associates with Gtr2p and Ego1p. Gene 437, 3238.
  • Wang, Y., Nakashima, N., Sekiguchi, T. & Nishimoto, T. (2005) Saccharomyces cerevisiae GTPase complex: Gtr1p-Gtr2p regulates cell-proliferation through Saccharomyces cerevisiae Ran-binding protein, Yrb2p. Biochem. Biophys. Res. Commun. 336, 639645.
  • Zhang, T., Peli-Gulli, M.P., Yang, H., De Virgilio, C. & Ding, J. (2012) Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure 20, 21512160.