• Aquila heliaca ;
  • brood sex ratio;
  • eagle;
  • irregular variation;
  • stochastic variation

Sex ratio theory attempts to explain observed variation in offspring sex ratio at both the population and the brood levels. In the context of low-fecundity organisms producing high-investment offspring, the drivers of adaptive variation in sex ratio are incompletely understood. For raptors that display reverse sexual dimorphism (RSD), preferential allocation of resources to the putatively cheaper sex (male) may be a response to environmental, social or demographic stressors. To assess the extent of skew in offspring sex ratios and to evaluate possible dietary, environmental and demographic correlates of such skew to long-lived RSD avian species, we evaluated the offspring sex ratio of 219 chicks from 119 broods in 30 territories of Eastern Imperial Eagles Aquila heliaca across 7 years and four regions at a nature reserve in Kazakhstan. Only in one region in 1 year of our study did the offspring sex ratio differ significantly from parity (10 males : 1 female in 11 territories). Whereas offspring sex ratios were independent of dietary diversity, precipitation, temperature and productivity, we found that year had a moderate effect on brood sex ratio within territories. Our results provide limited evidence of brood sex manipulation in these populations of Eastern Imperial Eagles, and no mechanistic insight into predictions associated with it. Stochastic variation is likely to explain much of the fluctuation we observed in sex ratios, but our observations are also consistent with the hypothesis that sex-ratio manipulation may occur irregularly, in concurrence with atypical environmental or demographic conditions that fluctuate at a time scale longer than that of our 7-year study.