SEARCH

SEARCH BY CITATION

References

  • 1
    Sambandan, D.R. and Ratner, D. Sunscreens: an overview and update. J. Am. Acad. Dermatol. 64, 748758 (2011).
  • 2
    Villalobos-Hernandez, J.R. and Müller-Goymann, C.C. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int. J. Pharm. 322, 161170 (2006).
  • 3
    Mader, K., Wissing, S.A. and Müller, R.H. Solid lipid nanoparticles (SLN) – a novel carrier for UV blockers. Pharm. Unserer Zeit 10, 783786 (2001).
  • 4
    Wong, T. and Orton, D. Sunscreen allergy and its investigation. Clinics Dermatol. 29, 306310 (2011).
  • 5
    Anderson, M.W., Hewitt, J.P. and Spruce, S.R. Broad spectrum physical sunscreens: titanium dioxide and zinc oxide. In: Sunscreens (Marcel and Dekker eds.), pp. 353398. Cosmetic science and Technology Series, New York (1997).
  • 6
    Nohynek, G.J., Lademann, J., Ribaud, C. and Roberts, M.S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety Crit. Rev. Toxicol. 37, 251277 (2007).
  • 7
    Sunscreen Drug Products for Over-the-Counter Human Use, Final monograph, Federal register 64 27666, US Food and Drug Administration, Rockville, MD, (2000). Available from http://www.cfsan.fda.gov/~lrd/fr990521.html.
  • 8
    Salinaro, A., Emeline, A.V., Zhao, J., Hidaka, H., Ryabchuk, V.K. and Serpone, N. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested protocol. Pure Appl. Chem. 71, 321335 (1999).
  • 9
    Collaris, E.J. and Frank, J. Photoallergic contact dermatitis caused by ultraviolet filters in different sunscreens. Int. J. Dermatol. 47, 3537 (2008).
  • 10
    Bouillon, C. Recent advances in sun protection. J. Dermatol. Sci. 23, 5761 (2000).
  • 11
    Gasparro, F.P., Mitchnick, M. and Nash, J.F. A review of sunscreen safety and efficacy. Photochem. Photobiol. 68, 243256 (1998).
  • 12
    Sayes, C.M., Wahi, R., Kurian, P.A. et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92, 174185 (2006).
  • 13
    Sclafani, A. and Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 100, 1365513661 (1996).
  • 14
    Therapeutic Good Administration. Australian Regulatory Guidelines for OTC Medicines (ARGOM) (2009). Available from: http://www.tga.gov.au/docs/html/argom.
  • 15
    Council Directive of the EEC (76/768/EEC). List of UV Filters which Cosmetic Products may Contain. Annex VII, pp. 119123 (2009). Available at: http://www.emergogroup.com/files/Cosmetics%20Directive%2076-768-EEC.pdf.
  • 16
    Maier, H., Schauberger, G., Brunnhofer, K. and Hönigsmann, H. Change of Ultraviolet Absorbance of Sunscreens by Exposure to Solar-Simulated Radiation. J Invest Dermatol. 117, 256262 (2001).
  • 17
    Bryden, A.M., Moseley, H., Ibbotson, S.H. et al. Photopatch testing of 1155 patients: results of the UK multicentre photopatch study group. Br. J. Dermatol. 155, 737747 (2006).
  • 18
    Kerr, A. and Ferguson, J. Photoallergic contact dermatitis. Photodermatol. Photoimmunol. Photomed. 26, 5665 (2010).
  • 19
    Victor, F.C., Cohen, D.E. and Soter, N.A. A 20 year analysis of previous and emerging allergens that elicit photoallergic contact dermatitis. J. Am. Acad. Dermatol. 62, 605610 (2010).
  • 20
    Karlsson, I., Hillerström, L., Stenfeldt, A.L., Mårtensson, J. and Börje, A. Photodegradation of dibenzoylmethanes; potential cause of photocontact allergy to sunscreens. Chem. Res. Toxicol. 22, 18811892 (2009).
  • 21
    Gaspar, L.R. and Campos, P.M.B.G.M. Evaluation of the photostability of different UV filter combinations in a sunscreen. Int. J. Pharm. 307, 123128 (2005).
  • 22
    Vanquerp, V., Rodriguez, C., Coiffard, C., Coiffard, L.J.M. and De Roeck-Holtzhauer, Y. High-performance liquid chromatographic method for the comparison of the photostability of five sunscreen agents. J. Chromato. 832, 273277 (1999).
  • 23
    Diffey, B.L., Stokes, R.P., Forestier, S., Mazilier, C. and Rougier, A. Suncare product photostability: a key parameter for a more realistic in vitro efficacy evaluation. Eur. J. Dermatol. 7, 226 (1997).
  • 24
    Hughes, T.M. and Stone, N.M. Benzophenone 4: an emerging allergen in cosmetics and toiletries? Contact Dermatitis. 56, 153156 (2007).
  • 25
    Waters, A.J., Sandhu, D.R., Lowe, G. and Ferguson, J. Photocontact allergy to PABA in sunscreens: the need for continued vigilance. Contact Dermatitis. 60, 172173 (2009).
  • 26
    Allen, J.M., Gossett, C.J. and Allen, S.K. Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of PABA. J. Photochem. Photobiol. 32, 3337 (1996).
  • 27
    Inbaraj, J.J., Bilski, P. and Chignell, C.F. Photophysical and photochemical studies of 2-phenylbenzimidazole and UVB sunscreen 2-phenylbenzimidazole-5-sulfonic acid. Photochem. Photobiol. 75, 107116 (2002).
  • 28
    Cantrell, A., McGarvery, D.J. and Truscott, T.G. Photochemical and photophysical properties of sunscreens. In: Sun Protection in Man (Giacomoni, P.U. ed.), pp. 495519. Elsevier, Amsterdam (2001).
  • 29
    Schlumpf, M., Schmid, P., Durrer, S. et al. Endocrine activity and developmental toxicity of cosmetic UV filters-an update. Toxicology 205, 113122 (2004).
  • 30
    Serpone, N., Dondi, D. and Albini, A. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorga. Chim. A. 360, 794802 (2006).
  • 31
    Sayre, R.M., Dowdy, J.C., Gerwig, A.J., Shields, W.J. and Lloyd, R.V. Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem. Photobiol. 81, 452456 (2005).
  • 32
    Chatelain, E. and Gabard, B. Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem. Photobiol. 74, 401406 (2001).
  • 33
    Hanson, K.M., Gratton, E. and Bardeen, C.J. Sunscreen enhancement of UV-induced reactive oxygen species in the skin. Free Rad. Biol. Med. 41, 12051212 (2006).
  • 34
    Hayden, C.G.J., Roberts, M.S. and Benson, H.A.E. Systemic absorption of sunscreen after topical application. Lancet 350, 863864 (1997).
  • 35
    Janjua, N.R., Kongshoj, B., Andersson, A.M. and Wulf, H.C. Sunscreens in human plasma and urine after repeated whole-body topical application. J. Eur. Acad. Dermatol. Venereol. 22, 456461 (2008).
  • 36
    Schlumpf, M., Cotton, B., Conscience, M., Haller, V., Steinmann, B. and Lichtensteiger, W. In vitro and in vivo estrogenicity of UV screens. Environ. Health. Pers. 109, 239244 (2001).
  • 37
    Touitou, E. and Godin, B. Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations. Clinics Dermatol. 26, 375379 (2008).
  • 38
    Treffel, P. and Gabard, B. Skin penetration and SPF of ultraviolet filters from two vehicles. Pharm. Res. 13, 770774 (1996).
  • 39
    Walters, K.A. and Roberts, M.S. Percutaneous absorption of sunscreens. In: Topical Absorption of Dermatological Products (Bronaugh, R.L. and Maibach, H.I. eds.), pp. 465481. Marcel Dekker, New York (2002).
  • 40
    Roberts, M.S. The Relationship between Structure and Barrier Functions of the Skin. Marcel Dekker Ed., New York (1998).
  • 41
    Palm, M.D. and O'Donoghue, M.N. Update on photoprotection. Dermatol. Ther. 20, 360376 (2007).
  • 42
    Hany, J. and Nagel, R. Detection of sunscreen agents in human breast milk. Dtsch. Lebensm. Rundsch. 91, 341345 (1995).
  • 43
    Kasichayanula, S., House, J.D., Wang, T. and Gu, X. Percutaneous characterization of the insect repellent DEET and the sunscreen Oxybenzone from topical skin application. Toxicol. App. Pharmacol. 223, 187194 (2007).
  • 44
    Bolt, H.M., Guhe, C. and Degen, G.H. Comments on “In vitro and in vivo estrogenicity of UV screens”. Environ. Health Perspect. 109, 358361 (2001).
  • 45
    Morohoshi, K., Yamamoto, H., Kamata, R., Shiraishi, F., Koda, T. and Morita, M. Estrogenic activity of 37 components of commercial sunscreen lotions evaluated by in vitro assays. Toxicol. In Vitro 19, 457469 (2005).
  • 46
    Soeborg, T., Hollesen Basse, L. and Halling-Sorensen, B. Risk assessment of topically applied products. Toxicol. 236, 140148 (2007).
  • 47
    Tinwell, H., Lefevre, P.A., Moffat, G.J., Burns, A., Odum, J., Spurway, T.D., Orphanides, G. and Ashby, J. Confirmation of uterotrophic activity of 3 (4-methylbenzylidene) camphor in the immature rat. Environ. Health Persp. 110, 533536 (2002).
  • 48
    Mueller, S.O., Kling, M., Firzani, P.A. et al. Activation of estrogen receptor α and ER β by 4-methylbenzylidene-camphor in human and rat cells: comparison with phyto- and xenoestrogens. Toxicol. Lett. 142, 89101 (2003).
  • 49
    Schreurs, R., Lauser, P., Seinen, W. and Van Den Burg, B. Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch. Toxicol. 76, 257261 (2002).
  • 50
    Durrer, S., Maerkel, K., Schlumpf, M. and Lichtensteiger, W. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor. Endocrinology 146, 21302139 (2005).
  • 51
    Kimura, K. and Katon, T. Photoallergic contact dermatitis from the sunscreen ethylhexyl-p-methoxycinnamate. Contact Dermatitis. 32, 304305 (1995).
  • 52
    Bruynzeel, D. Patch testing in adverse drug reactions. In: Fisher's Contact Dermatitis. (Rietschel, R.L. and Fowler, J.F. eds), 5th ed., pp. 479494. Springer, Philadelphia (2001).
  • 53
    Yener, G., Incegül, T. and Yener, N. Importance of using lipid microspheres as carriers for UV filters on the example octyl methoxy cinnamate. Int. J. Pharm. 258, 203207 (2003).
  • 54
    Avenel-Audran, M., Dutartre, H., Goossens, A. et al. Octocrylene, an emerging photoallergen. Arch. Dermatol. 146, 753757 (2010).
  • 55
    Sommer, S., Wilkinson, S.M., English, J.S., Ferguson, J. Photoallergic contact dermatitis from the sunscreen octyl-triazone. Contact Dermatitis. 46, 304305 (2002).
  • 56
    Singh, M. and Beck, M.H. Octyl salicylate: a new contact sensitivity. Contact Dermatitis. 56, 48 (2007).
  • 57
    Touitou, E. and Godin, B. New approaches for UV-induced photodamage protection. J. Appl. Cosmetol. 24, 139147 (2006).
  • 58
    Australian government TGA, OTC Medicines Section. A review of the scientific literature on the safety of nanoparticulate titanium dioxide or zinc oxide in sunscreens. (2006). Available from: http://www.tga.gov.au/npmeds/sunscreen-zotd.pdf.
  • 59
    Consumer-Union. Sunscreens: some are short on protection. Consumer Reports. 72, 6 (2007).
  • 60
    Yang, Y.H., Chen, H. and Pan, G. Particle concentration effect in adsorption/desorption of Zn(II) on anatase type nano TiO2. J. Environ. Sci. 19, 14421445 (2007).
  • 61
    Nemanic, M.K. and Elias, P.M. In situ precipitation: a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum. J. Histochem. Cytochem. 28, 573578 (1980).
  • 62
    Ghadially, R., Halkier-Sorensen, L. and Elias, P.M. Effects of petrolatum on stratum corneum structure and function. J. Am. Acad. Dermatol. 26, 387396 (1992).
  • 63
    Brunner, T.J., Wick, P., Manser, P. et al. In Vitro cytotoxicity of oxide nanoparticles: comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ. Sci. Technol. 40, 43744381 (2006).
  • 64
    Jeng, H.A. and Swanson, J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health Tox. Hazard. Subs. Environ. Eng. 41, 26992711 (2006).
  • 65
    Gojova, A., Guo, B., Kota, R.S., Rutledge, J.C., Kennedy, I.M. and Barakat, A.I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health Perspect. 115, 403409 (2007).
  • 66
    Lai, J.C., Lai, M.B., Jandhyam, S., Dukhande, V.V., Bhushan, A., Daniels, C.K., Leung, S.W. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int. J. Nanomed. 3, 533545 (2008).
  • 67
    Lanone, S., Rogerieux, F., Geys, J. et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 6, 1426 (2009).
  • 68
    Deng, X., Luan, Q., Chen, W., Wang, Y., Wu, Y., Zhang, H. and Jiao, Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnol. 20, 101115 (2009).
  • 69
    Meyer, K., Rajanahalli, P., Ahamed, M., Rowe, J.J. and Hong, Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol. In Vitro. 25, 17211726. (2011), 10.1016/j.tiv.2011.08.011.
  • 70
    Ma, H., Kabengi, N.J., Bertsch, P.M., Unrine, J.M., Glenn, T.C. and Williams, P.L. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Poll. 159, 14731480 (2011).
  • 71
    Wakefield, G., Lipscomb, S., Holland, E. and Knowland, J. The effects of manganese doping on UVA absorption and free radical generation of micronized titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem. Photobiol. Sci. 3, 648652 (2004).
  • 72
    Schlossman, D. and Shao, Y. Inorganic UV filters. In: Sunscreens: regulation and commercial development (Shaat, N.A. ed). pp. 239279. Taylor and Francis Group, London (2005).
  • 73
    Cao, Zhi. and Zhang, Z. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica. App. Sur. Sci. 257, 41514158 (2011).
  • 74
    Nohynek, G.J., Dufour, E.K. and Roberts, M.S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol. 21, 136149 (2008).
  • 75
    Pinheiro, T., Allon, J., Alves, L.C., Filipe, P. and Silva, J.N. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across the skin. Nuclear Instrum. Methods Phys. Res. 260, 119123 (2007).
  • 76
    Filipe, P., Silva, J.N., Silva, R. et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol. 22, 266275 (2009).
  • 77
    Gopee, N.V., Roberts, D.W., Webb, P. et al. Quantitative determination of skin penetration of PEG-Coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. Toxicol. Sci. 111, 3748 (2009).
  • 78
    Baroli, B., Ennas, M.G., Loffredo, F., Isola, M., Pinna, R. and Lopez-Quintela, M.A. Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127, 17011712 (2007).
  • 79
    Cross, S.E., Russel, M., Southwell, I. and Roberts, M.S. Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20, 148154 (2007).
  • 80
    Kiss, B., Biro, T., Czifra, G. et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp. Dermatol. 17, 659667 (2008).
  • 81
    Kuntsche, J., Bunjes, H., Fahr, A., Pappinen, S., Ronkko, S., Suhonen, M. and Urtti, A. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int. J. Pharm. 354, 180195 (2008).
  • 82
    Newman, M.D., Stotland, M. and Ellis, J.I. The safety of nanosized particles in titanium dioxide-and zinc oxide-based sunscreens. J. Am. Acad. Dermatol. 61, 685692 (2009).
  • 83
    Jiang, S.J., Chen, J.Y., Lu, Z.F., Yao, J., Che, D.F. and Zhou, X.J. Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J. Dermatol. Sci. 44, 2936 (2006).
  • 84
    Brouxhon, S., Kyrkanides, S., O'Banion, M.K. et al. Sequential Down-regulation of E-Cadherin with squamous cell carcinoma progression: loss of E-Cadherin via a Prostaglandin E2-EP2–dependent posttranslational mechanism. Cancer Res. 67, 76547664 (2007).
  • 85
    Yamamoto, T., Kurasawa, M., Hattori, T., Maeda, T., Nakano, H. and Sasaki, H. Relationship between expression of tight junction-related molecules and perturbed epidermal barrier junction in UVB-irradiated hairless mice. Arch. Dermatol. Res. 300, 6168 (2008).
  • 86
    Mortensen, L.J., Oberdörster, G., Pentland, A.P. and Delouise, L.A. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8, 27792787 (2008).
  • 87
    Brouxhon, S., Konger, R.L., VanBuskirk, J.A. et al. Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J. Invest. Dermatol. 127, 439446 (2007).
  • 88
    Tripp, C.S., Blomme, A.G., Chinn, K.S., Hardy, M.M., LaCelle, P. and Pentland, A.P. Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J. Invest. Dermatol. 121, 853861 (2003).
  • 89
    Baroli, B., Ennas, M.G., Loffredo, F., Isola, M., Pinna, R. and Lopez-Quintela, M.A. Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127, 17011712 (2007).
  • 90
    Lademann, J., Patzelt, A., Darvin, M., Richter, H., Antoniou, C., Sterry, W. and Koch, S. Application of optical non invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis. Skin Res. Technol. 13, 119132 (2007).
  • 91
    Larese, F.F., D'Agostin, F., Crosera, M., Adami, G., Renzi, N., Bovenzi, M. and Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255, 3337 (2009).
  • 92
    Shukla, R.K., Sharma, Y., Pandey, A.K., Singh, S., Sultana, S. and Dhawan, A. ROS-mediated genotoxicity induced by TiO2 nanoparticles in human epidermal cells. Toxicol. In Vitro 25, 231241 (2011).
  • 93
    Wamer, W.G., Yin, J.J. and Wei, R.R. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biol. Med. 6, 851858 (1997).
  • 94
    Rampaul, A., Parkin, I.P. and Cramer, L.P. Damaging and protective properties of inorganic components of sunscreens applied to cultured human skin cells. J. Photochem. Photobiol. A: Chem. 191, 138148 (2007).
  • 95
    Tiano, L., Armeni, T., Venditti, E. and Barucca, G. Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Rad. Biol. Med. 49, 408415 (2010).
  • 96
    Kakikoni, K., Yamane, K., Teraoka, R., Otsuka, M. and Matsuda, Y. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J. Pharm. Sci. 93, 582589 (2004).
  • 97
    Merhi, M., Brient, A., Chang, J. et al. Etude de la génotoxicité in vitro de nanoparticules manufacturées sur une lignée bronchique humaine: exemple des TiO2. Séminaire, Environnement & Santé, Lille, 30 Novembre 2010, .
  • 98
    Gurr, J.R., Wang, A.S.S., Chen, C.H. and Jan, K.Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 6673 (2005).
  • 99
    Serpone, N., Salinaro, A., Horikoshi, S. and Hidaka, H. Beneficial effects of photo-inactive titanium dioxide specimens on plasmid DNA, human cells and yeast cells exposed to UVA/UVB simulated sunlight. J. Photochem. Photobiol. 179, 200212 (2006).
  • 100
    Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H. and Knowland, J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 418, 8790 (1997).
  • 101
    Anderson, C. and Bard, A.J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. B. 101, 26112616 (1997).
  • 102
    Karlsson, H.L., Cronholm, P., Gustafsson, J. and Moller, L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21, 17261732 (2008).
  • 103
    Wu, J., Liu, W., Xue, C. et al. Toxicity and penetration of TIO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Letters. 191, 18 (2009).
  • 104
    Gupta, V.K., Zatz, J.L. and Rerek, M. Percutaneous absorption of sunscreens through micro-yucatan pig skin in vitro. Pharm. Res. 16, 16021607 (1999).
  • 105
    Menzel, F., Reinert, T., Vogt, J. and Butz, T. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl. Ins. Meth. Phys. Res., 219–220, 8286 (2004).
  • 106
    Li, S.Q., Zhu, R.R., Zhu, H., Xue, M., Sun, X.Y., Yao, S.D. and Wang, S.L. Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem. Toxicol. 46, 36263631 (2008).
  • 107
    Ghosh, M., Bandyopadhyay, M. and Mukherjee, A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81, 12531262 (2010).
  • 108
    Gopee, N.V., Roberts, D.W., Webb, P. et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol. Sci. 98, 248257 (2007).
  • 109
    Theogaraj, E., Riley, S., Hughes, L., Maier, M. and Kirkland, D. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide. Mut. Res. 634, 205219 (2007).
  • 110
    Jing, L., Xu, Z., Sun, X., Shang, J. and Cai, W. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci. 180, 308314 (2001).
  • 111
    Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H.J. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Photochem. Photobiol. 85, 247255 (1995).
  • 112
    Migdal, C., Rahal, R., Rubod, A. et al. Internalisation of hybrid titanium dioxide/para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions. Toxicol. Lett. 199, 3442 (2010).
  • 113
    United States national library of medicine: ChemIDplus Lite. http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp.
  • 114
    Barel, A.O., Paye, M. and Maibach, H.I. Handbook of Cosmetic Science and Technology. (3rd ed). Informa healthcare, New York, London (2009).