• 1
    Miller WD. The Micro-Organisms of the Human Mouth: The Local and General Diseases Which are Caused by them. Basel: (Reprinted in English, 1973) Karger; 1890.
  • 2
    Clarke JK. On the bacterial factor in the aetiology of dental caries. Br J Exp Pathol 1924 5: 141147.
  • 3
    Enright JJ, Friesell HE, Trescher MO. Studies of the cause and nature of dental caries. J Dent Res 1932 12: 759851.
  • 4
    McClure FJ, Hewitt WL. The relation of penicillin to induced rat dental caries and oral L. acidophilus. J Dent Res 1948 25: 441443.
  • 5
    Orland FJ, Blayney JR, Harrison RW et al. Use of the germfree animal technique in the study of experimental dental caries: I. Basic observations on rats reared free of all microorganisms. J Dent Res 1954 33: 147174.
  • 6
    Fitzgerald RJ, Keyes PH. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 1960 61: 919.
  • 7
    Coykendall AL. Proposal to elevate the subspecies of Streptococcus mutans to species status based on their molecular composition. Int J Syst Bacteriol 1977 27: 2630.
  • 8
    Edwardsson S. Characteristics of caries-inducing human streptococci resembling Streptococcus mutans. Arch Oral Biol 1968 13: 637646.
  • 9
    Fitzgerald RJ. Plaque microbiology and caries. Ala J Med Sci 1968 5: 239246.
  • 10
    Krasse B, Jordan HV, Edwardsson S et al. The occurrence of certain “caries-inducing” streptococci in human dental plaque material with special reference to frequency and activity of caries. Arch Oral Biol 1968 13: 911918.
  • 11
    Bowden GH, Hardie JM, Fillery ED et al. Microbial analyses related to caries susceptibility. In: Bibby BG, Shern RJ, editors. Proceedings, Methods of Caries Prevention. London: Information Retrieval; 1978. p. 8397.
  • 12
    Folke LE, Gawronski TH, Staat RH et al. Effect of dietary sucrose on quantity and quality of plaque. Scand J Dent Res 1972 80: 529533.
  • 13
    Gawronski TH, Staat RA, Zaki HA et al. Effects of dietary sucrose levels on extracellular polysaccharide metabolism of human dental plaque. J Dent Res 1975 54: 881890.
  • 14
    Staat RH, Gawronski TH, Cressey DE et al. Effects of dietary sucrose levels on the quantity and microbial composition of human dental plaque. J Dent Res 1975 54: 872880.
  • 15
    Dennis DA, Gawronski TH, Sudo SZ et al. Variations in microbial and biochemical components of four-day plaque during a four-week controlled diet period. J Dent Res 1975 54: 716722.
  • 16
    Skinner A, Woods A. An investigation of the effects of maltose and sucrose in the diet on the microbiology of dental plaque in Man. Arch Oral Biol 1984 29: 323326.
  • 17
    Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986 50: 353380.
  • 18
    Hamilton IR, Phipps PJ, Ellwood DC. Effect of growth rate and glucose concentration on the biochemical properties of Streptococcus mutans Ingbritt in continuous culture. Infect Immun 1979 26: 861869.
  • 19
    Hamilton IR, St Martin EJ. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Infect Immun 1982 36: 567575.
  • 20
    Sturr MG, Marquis RE. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria. Appl Environ Microbiol 1992 58: 22872291.
  • 21
    de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res 2000 34: 486490.
  • 22
    Bradshaw DJ, McKee AS, Marsh PD. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res 1989 68: 12981302.
  • 23
    Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res 1998 32: 456462.
  • 24
    Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 2010 5: 403417.
  • 25
    Dibdin GH, Shellis RP. Physical and biochemical studies of Streptococcus mutans sediments suggest new factors linking the cariogenicity of plaque with its extracellular polysaccharide content. J Dent Res 1988 67: 890895.
  • 26
    Johnson MC, Bozzola JJ, Shechmeister IL et al. Biochemical study of the relationship of extracellular glucan to adherence and cariogenicity in Streptococcus mutans and an extracellular polysaccharide mutant. J Bacteriol 1977 129: 351357.
  • 27
    Russell RR. How has genomics altered our view of caries microbiology? Caries Res 2008 42: 319327.
  • 28
    Gustafsson BE, Quensel CE, Lanke LS et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand 1954 11: 232264.
  • 29
    Harris R. Biology of the children of Hopewood House, Bowral, Australia. 4. Observations on dental caries experience extending over 5 years (1957–1961). J Dent Res 1963 42: 13871399.
  • 30
    Bransby ER, Knowles EM. A comparison of the effects of enemy occupation and postwar conditions on the incidence of dental caries in children in the Channel Islands in relation to diet and food supplies. Br Dent J 1949 87: 237243.
  • 31
    Sognnaes RF. Analysis of wartime reduction of dental caries in European children; with special regard to observations in Norway. Am J Dis Child 1948 75: 792821.
  • 32
    van der Hoeven JS. Carbohydrate metabolism of Streptococcus mutans in dental plaque in gnotobiotic rats. Arch Oral Biol 1976 21: 431433.
  • 33
    Guggenheim B. Extracellular polysaccharides and microbial plaque. Int Dent J 1970 20: 657678.
  • 34
    Van Houte J. Role of micro-organisms in caries etiology. J Dent Res 1994 73: 672681.
  • 35
    Zero DT, Van Houte J, Russo J. The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans. J Dent Res 1986 65: 918923.
  • 36
    Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 2003 69: 722724.
  • 37
    Gao XJ, Elliot JC, Anderson P. Scanning and contact microradiographic study of the effect of degree of saturation on the rate of enamel demineralization. J Dent Res 1991 70: 13321337.
  • 38
    Carey CM, Gregory TM, Rupp NW et al. The driving forces in human dental plaque fluid for demineralisation and remineralisation of enamel mineral. In: Leach SA, editor. Factors Relating to Demineralisation and Remineralisation of the Teeth. Oxford: IRL Press; 1986. p. 163173.
  • 39
    Lynch RJ. Model parameters and their influence on the outcome of in vitro demineralisation and remineralisation studies. Monogr Oral Sci 2006 19: 6585.
  • 40
    Pearce E. Plaque minerals and dental caries. N Z Dent J 1998 94: 1215.
  • 41
    Gao XJ, Fan Y, Kent RL Jr et al. Association of caries activity with the composition of dental plaque fluid. J Dent Res 2001 80: 18341839.
  • 42
    Rose RK, Shellis RP, Lee AR. The role of cation bridging in microbial fluoride binding. Caries Res 1996 30: 458464.
  • 43
    Vogel GL, Tenuta LM, Schumacher GE et al. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse. Caries Res 2010 44: 108115.
  • 44
    Cury JA, Rebello MA, Del Bel Cury AA. In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res 1997 31: 356360.
  • 45
    Pearce EI, Sissons CH, Coleman M et al. The effect of sucrose application frequency and basal nutrient conditions on the calcium and phosphate content of experimental dental plaque. Caries Res 2002 36: 8792.
  • 46
    Duggal MS, Toumba KJ, Amaechi BT et al. Enamel demineralization in situ with various frequencies of carbohydrate consumption with and without fluoride toothpaste. J Dent Res 2001 80: 17211724.
  • 47
    Cury JA, do Amaral RC, Tenuta LM et al. Low-fluoride toothpaste and deciduous enamel demineralization under biofilm accumulation and sucrose exposure. Eur J Oral Sci 2010 118: 370375.
  • 48
    Kirkham J, Robinson C, Strong M et al. Effects of frequency and duration of acid exposure on demineralization/remineralization behaviour of human enamel in vitro. Caries Res 1994 28: 913.
  • 49
    Anderson CA, Curzon ME, van Loveren C et al. Sucrose and dental caries: a review of the evidence. Obes Rev 2009 10(Suppl 1): 4154.
  • 50
    Bowen WH. Food components and caries. Adv Dent Res 1994 8: 215220.
  • 51
    Geddes DA. Diet patterns and caries. Adv Dent Res 1994 8: 221224.
  • 52
    Caufield PW, Cutter GR, Dasanayake A. Initial acquisition of mutans streptococci: evidence for a discrete window of infectivity. J Dent Res 1993 72: 3745.
  • 53
    Pienihakkinen K, Jokela J. Clinical outcomes of risk-based caries prevention in preschool-aged children. Community Dent Oral Epidemiol 2002 30: 143150.
  • 54
    Russell MW, Childers DW, Michalek SM et al. A caries vaccine. The state of the science of immunization against dental caries. J Dent Res 2004 38: 230235.
  • 55
    Zahradnik RT, Magnusson I, Walker C et al. Preliminary assessment of safety and effectiveness in humans of ProBiora3, a probiotic mouthwash. J Appl Microbiol 2009 107: 682690.
  • 56
    Tanzer JM, Livingston J, Thompson AM. The microbiology of primary dental caries in humans. J Dent Educ 2001 65: 10281037.
  • 57
    Aas JA, Griffen AL, Dardis SR et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008 46: 14071417.
  • 58
    Mikx FH, van der Hoeven JS, Konig KG et al. Establishment of defined microbial ecosystems in germ-free rats. I. The effect of the interactions of Streptococcus mutans or Streptococcus sanguis with Veillonella alcalescens on plaque formation and caries activity. Caries Res 1972 6: 211223.
  • 59
    Mikx FH, van der Hoeven JS. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch Oral Biol 1975 20: 407410.
  • 60
    Gross EL, Beall CJ, Kutsch SR et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE 2012 7: e47722.
  • 61
    Palmer CA, Kent R Jr, Loo CY et al. Diet and caries-associated bacteria in severe early childhood caries. J Dent Res 2010 89: 12241229.
  • 62
    Kaur R, Gilbert SC, Sheehy EC et al. Salivary levels of bifidobacteria in caries-free and caries-active children. Int J Paediatr Dent 2013 23: 3238.
  • 63
    Mormann JE, Muhlemann HR. Oral starch degradation and its influence on acid production in human dental plaque. Caries Res 1981 15: 166175.
  • 64
    Lingstrom P, Birkhed D, Ruben J et al. Effect of frequent consumption of starchy food items on enamel and dentin demineralization and on plaque pH in situ. J Dent Res 1994 73: 652660.
  • 65
    Lingstrom P, Birkhed D, Granfeldt Y et al. pH measurements of human dental plaque after consumption of starchy foods using the microtouch and the sampling method. Caries Res 1993 27: 394401.
  • 66
    Kashket S, Van Houte J, Lopez LR et al. Lack of correlation between food retention on the human dentition and consumer perception of food stickiness. J Dent Res 1991 70: 13141319.
  • 67
    Kashket S, Zhang J, Van Houte J. Accumulation of fermentable sugars and metabolic acids in food particles that become entrapped on the dentition. J Dent Res 1996 75: 18851891.
  • 68
    Linke HA, Birkenfeld LH. Clearance and metabolism of starch foods in the oral cavity. Ann Nutr Metab 1999 43: 131139.
  • 69
    Lingstrom P, Van Houte J, Kashket S. Food starches and dental caries. Crit Rev Oral Biol Med 2000 11: 366380.
  • 70
    Campain AC, Morgan MV, Evans RW et al. Sugar-starch combinations in food and the relationship to dental caries in low-risk adolescents. Eur J Oral Sci 2003 111: 316325.
  • 71
    Chankanka O, Marshall TA, Levy SM et al. Mixed dentition cavitated caries incidence and dietary intake frequencies. Pediatr Dent 2011 33: 233240.
  • 72
    O'Mullane DM. Systemic fluorides. Adv Dent Res 1994 8: 181184.
  • 73
    Wong MC, Clarkson J, Glenny AM et al. Cochrane reviews on the benefits/risks of fluoride toothpastes. J Dent Res 2011 90: 573579.
  • 74
    Marinho VC. Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur Arch Paediatr Dent 2009 10: 183191.
  • 75
    Marinho VC. Evidence-based effectiveness of topical fluorides. Adv Dent Res 2008 20: 37.
  • 76
    Koch G, Lindhe H. The state of the gingivae and the caries increment in schoolchildren during and after withdrawal of various prophylactic measures. In: McHugh WD, editor. Dental Plaque. Dundee: DC Thompson; 1970. p. 271281.
  • 77
    ten Cate JM, van Loveren C. Fluoride mechanisms. Dent Clin North Am 1999 43: 713742.
  • 78
    Lynch RJM, Navada R, Walia R. Low levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int Dent J 2004 54: 304309.
  • 79
    Pearce EI, Cutress TW, Sissons CH et al. Supplementation of domestic sugar (sucrose) with fluoride. Effects on experimental dental caries, plaque pH, and fluoride levels in plaque and enamel. N Z Dent J 1992 88: 8488.
  • 80
    Ekstrand J. Fluoride in plaque fluid and saliva after NaF or MFP rinses. Eur J Oral Sci 1997 105: 478484.
  • 81
    Vogel GL, Zhang Z, Chow LC et al. Effect of in vitro acidification on plaque fluid composition with and without a NaF or a controlled-release fluoride rinse. J Dent Res 2000 79: 983990.
  • 82
    Tanaka Y, Margolis HC. Release of mineral ions in dental plaque following acid production. Arch Oral Biol 1999 44: 253258.
  • 83
    Watson PS, Pontefract HA, Devine DA et al. Penetration of fluoride into natural plaque biofilms. J Dent Res 2005 84: 451455.
  • 84
    Saunders FG, Bosma ML, Buch RM. Evaluation of Plaque Fluid Fluoride Retention after Dentifrice Application. IADR Abstract 2007 0511.
  • 85
    Newby EE, Bosma ML, Yadav M. Evaluation of plaque fluid fluoride retention after dentifrice application. Caries Res 2009 43: 208.
  • 86
    Hamilton IR. Biochemical effects of fluoride on oral bacteria. J Dent Res 1990 69 Spec No: 660667.
  • 87
    Marquis RE. Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol 1995 41: 955964.
  • 88
    Bradshaw DJ, McKee AS, Marsh PD. Prevention of population shifts in oral microbial communities in vitro by low fluoride concentrations. J Dent Res 1990 69: 436441.
  • 89
    Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 2003 26: 493510.
  • 90
    Soderling EM. Xylitol, mutans streptococci, and dental plaque. Adv Dent Res 2009 21: 7478.
  • 91
    Dodds MWJ, Chidichimo D, Haas MS. Delivery of active agents from chewing gum for improved remineralization. Adv Dent Res 2012 24: 5862.
  • 92
    Milgrom P, Soderling EM, Nelson S et al. Clinical evidence for polyol efficacy. Adv Dent Res 2012 24: 112116.
  • 93
    Makinen KK, Bennett CA, Hujoel PP et al. Xylitol chewing gums and caries rates: a 40-month cohort study. J Dent Res 1995 74: 19041913.
  • 94
    Makinen KK, Hujoel PP, Bennett CA et al. Polyol chewing gums and caries rates in primary dentition: a 24-month cohort study. Caries Res 1996 30: 408417.
  • 95
    Fontana M, Gonzalez-Cabezas C. Are we ready for definitive clinical guidelines on xylitol/polyol use? Adv Dent Res 2012 24: 123128.
  • 96
    Moynihan P. Foods and dietary factors that prevent dental caries. Quintessence Int 2007 38: 320324.
  • 97
    Marshall TA, Levy SM, Broffitt B et al. Dental caries and beverage consumption in young children. Pediatrics 2003 112: e184e191.
  • 98
    Levy SM, Warren JJ, Broffitt B et al. Fluoride, beverages and dental caries in the primary dentition. Caries Res 2003 37: 157165.
  • 99
    Petti S, Simonetti R, Simonetti DA. The effect of milk and sucrose consumption on caries in 6- to-11-year-old Italian schoolchildren. Eur J Epidemiol 1997 13: 659664.
  • 100
    Rugg-Gunn AJ, Edgar WM, Geddes DA et al. The effect of different meal patterns on plaque pH in human subjects. Br Dent J 1975 139: 351356.
  • 101
    Moynihan PJ, Snow S, Jepson NJ et al. Intake of non-starch polysaccharide (dietary fibre) in edentulous and dentate persons: an observational study. Br Dent J 1994 177: 243247.
  • 102
    Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J 2008 53: 268273.
  • 103
    Petti S, Scully C. Polyphenols, oral health and disease: a review. J Dent 2009 37: 413423.
  • 104
    Stephan RM. The effect of urea in counteracting the influence of carbohydrates on the pH of dental plaques. J Dent Res 1943 22: 63.
  • 105
    Obry F, Belcourt A, Frank RM et al. Low caries activity and salivary pH in youngsters dialyzed for chronic renal failure. J Biol Buccale 1984 12: 181186.
  • 106
    Peterson S, Woodhead J, Crall J. Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition. Pediatr Res 1985 19: 796799.
  • 107
    Kesel RG, Kirch ER. Recent developments in the biologic production of ammonia and the use of ammonia and carbamide in caries prevention. Oral Surg Oral Med Oral Pathol 1949 2: 459473.
  • 108
    Imfeld T, Birkhed D, Lingstrom P. Effect of urea in sugar-free chewing gums on pH recovery in human dental plaque evaluated with three different methods. Caries Res 1995 29: 172180.
  • 109
    Nascimento MM, Gordan VV, Garvan CW et al. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 2009 24: 8995.
  • 110
    Zero DT. Sugars – the arch criminal? Caries Res 2004 38: 277285.