SEARCH

SEARCH BY CITATION

References

  • 1
    M. Guo, G. Dou, S. P. Gong, and D. X. Zhou, “Low-Temperature Sintered MgWO4–CaTiO3 Ceramics With Near-Zero Temperature Coefficient of Resonant Frequency,” J. Eur. Ceram. Soc., 32 [4] 883890 (2012).
  • 2
    Y. B. Chen, “Low Temperature Sintering and Microwave Dielectric Properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 Ceramics With BaCu(B2O5) Additions,” J. Alloy. Compd., 24 [16] 68846888 (2011).
  • 3
    K. C. Li, H. Wang, H. F. Zhou, M. H. Zhang, and X. Yao, “Silver Co-Firable ZnTiNb2O8 Microwave Dielectric Ceramics With Li2O–ZnO–B2O3 Glass Additive,” Int. J. Appl. Ceram. Tech., 7 E144E150 (2010).
  • 4
    L. X. Pang, H. Liu, D. Zhou, G. B. Sun, W. G. Qin, and W. G. Liu, “Microwave Dielectric Ceramic With Intrinsic low Firing Temperature: BaLa2(MoO4)4,” Mater. Lett., 72 [1] 128130 (2012).
  • 5
    Q. Zeng, W. Li, J. L. Shi, and J. K. Guo, “Fabrication and Microwave Dielectric Properties of a new LTCC Ceramic Composite Based on Li2O-Nb2O5-TiO2 System,” Mater. Lett., 60 [27] 32033206 (2006).
  • 6
    Q. Zeng, W. Li, J. L. Shi, X. L. Dong, and J. K. Guo, “Influence of V2O5 Additions to 5Li2O–1Nb2O5–5TiO2 Ceramics on Sintering Temperature and Microwave Dielectric Properties,” J. Am. Ceram. Soc., 90 [7] 22622265 (2007).
  • 7
    Q. Zeng, W. Li, J. L. Shi, X. L. Dong, and J. K. Guo, “Effect of B2O3 Addition to the LNT Ceramic Composite on Sintering Behavior and Microwave Dielectric Properties,” Phys. Stat. Sol. (a), 204 [10] 35333537 (2007).
  • 8
    B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech., 8 402410 (1960).
  • 9
    W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 476485 (1970).
  • 10
    Q. Zeng, W. Li, J. L. Shi, X. L. Dong, and J. K. Guo, “The Li2O–Nb2O5–TiO2 Composite Microwave Dielectric Ceramics With Adjustable Permittivities,” J. Am. Ceram. Soc., 91 [2] 644647 (2008).
  • 11
    M. Castellanos and A. R. West, “Order-Disorder Phenomena in Oxides With Rock Salt Structures: The System Li2TiO3-MgO,” J. Mater. Sci., 14 [2] 450454 (1979).
  • 12
    R. I. Smith and A. R. West, “Characterisation of an Incommensurate LiTiNb Oxide,” Mater. Res. Bull., 27 277285 (1992).
  • 13
    A. Y. Borisevich and P. K. Davies, “Crystalline Structure and Dielectric Properties of Li1+x−yNb1−x−3yTix+4yO3 M-Phase Solid Solutions,” J. Am. Ceram. Soc., 85 [3] 573578 (2002).
  • 14
    V. S. Hernandez, L. M. Torres Martinez, G. C. Mather, and A. R. West, “Stoichiometry, Structures and Polymorphism of Spinel-Like Phases, Li1.33xZn2-2xTi1+0.67xO4,” J. Mater. Chem., 6 15331536 (1996).
  • 15
    M. T. Sebastian and S. George, “Synthesis and Microwave Dielectric Properties of Novel Temperature Stable High Q, Li2ATi3O8 (A=Mg, Zn) Ceramics,” J. Am. Ceram. Soc., 93 [8] 21642166 (2010).
  • 16
    M. T. Sebastian and S. George, “Microwave Dielectric Properties of Novel Temperature Stable High Q Li2Mg1−xZnxTi3O8 and Li2A1−xCaxTi3O8 (A = Mg, Zn) Ceramics,” J. Eur. Ceram. Soc., 30 [12] 25852592 (2010).
  • 17
    B. D. Silverman, “Microwave Absorption in Cubic Strontium Titanate,” Phys. Rev., 125 19211930 (1962).
  • 18
    C. L. Huang, R. J. Lin, and J. F. Tzeng, “Dielectric Properties of Copper Oxide Doped 0.95Ba(Zn1/3Ta2/3)O3-0.05BaZrO3 Ceramics at Microwave Frequency,” Mater. Chem. Phys., 97 256260 (2006).