• 1
    Geological Disposal: Steps Towards Implementation. Nuclear Decommissioning Authority report, NDA/RWMD/013, 2010.
  • 2
    Development of the Nirex Reference Vault Backfill; Report on Current Status in 1994. United Kingdom Nirex Ltd. Report number S/97/014, 1997.
  • 3
    Geological Disposal: Generic Environmental Safety Case Main Report. Nuclear Decommissioning Authority report, NDA/RWMD/021, 2010.
  • 4
    P. K. Abraitis, B. P. McGrail, D. P. Trivedi, F. R. Livens, and D. J. Vaughan, “Single-Pass Flow-Through Experiments on a Simulated Waste Glass in Alkaline Media at 40 °C: I. Experiments Conducted at Variable Solution Flow Rates to Glass Surface Area Ratio,” J. Nucl. Mat., 280 196205 (2000).
  • 5
    S. Gin and J. P. Mestre, “SON 68 Nuclear Glass Alteration Kinetics Between pH 7 and pH 11.5,” J. Nucl. Mat., 295 8396 (2001).
  • 6
    E. M. Pierce, W. E. A. Rodriguez, L. J. Calligan, W. J. Shaw, and B. P. McGrail, “An Experimental Study of the Dissolution Rates of Stimulated Aluminoborosilicate Waste Glasses as a Function of pH and Temperature Under Dilute Conditions,” Appl. Geochem., 23 25592573 (2008).
  • 7
    Z. Andriambololona, N. Godon, and E. Vernaz, “Glass Alteration in the Presence of Mortar: Effect of the Cement Grade,” Proc. Mat. Sci. Symp., 257 151158 (1992).
  • 8
    T. Chave, P. Frugier, S. Gin, and A. Ayral, “Glass-Water Interphase Reactivity with Calcium Rich Solutions,” Geochim. Cosmochim. Acta, 75 41254139 (2011).
  • 9
    C. A. Utton, R. J. Hand, P. A. Bingham, N. C. Hyatt, S. W. Swanton, and S. J. Williams, “Dissolution of Vitrified Wastes in a High-pH Calcium-Rich Solution,” J. Nucl. Mat., 435 112122 (2013).
  • 10
    C. A. Utton, R. J. Hand, N. C. Hyatt, S. W. Swanton, and S. J. Williams, “Formation of Alteration Products During Dissolution of Vitrified ILW in a High-pH Calcium-Rich Solution,” J. Nucl. Mat., 442 3345 (2013).
  • 11
    S. Mercardo-Depierre, F. Angell, F. Frizon, and S. Gin, “Antagonist Effects of Calcium on Borosilicate Glass Alteration,” J. Nucl. Mat., 441 402410 (2013).
  • 12
    C. A. Utton, S. W. Swanton, J. Schofield, R. J. Hand, A. Clacher, and N. C. Hyatt, “Chemical Durability of Vitrified Wasteforms: Effects of pH and Solution Composition,” Min. Mag., 76 29192930 (2012).
  • 13
    E. Curti, L. Crovisier, J. L. Morvan, and A. M. Karpoff, “Long-term Corrosion of Two Nuclear Waste Reference Glasses (MW and SON68): A Kinetic and Mineral Alteration Study,” Appl. Geochem., 21 11521168 (2006).
  • 14
    ASTM Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Muliphase Glass Ceramics: The Product Consistency Test (PCT). ASTM International(2008). doi: 10.1520/C1285-02R08.
  • 15
    ASTM C 1220-98, Standard Test Method for Static Leaching of Monolithic Waste Forms for the Disposal of Radioactive Waste. ASTM International (2004).
  • 16
    D. L. Parkhurst, “User's Guide to PHREEQC – A Computer Program for Speciation, Reaction-Path, Advective Transport, and Inverse Geochemical Calculations,” US. Geological Survey Water-Resources Investigations Report 954227, 143 (1995).
  • 17
    P. G. Heath, C. L. Corkhill, M. C. Stennett, R. J. Hand, W. C. H. M. Meyer, and N. C. Hyatt, “Encapsulation of TRISO Particle Fuel in Durable Soda-Lime-Silicate –Glasses,” J. Nucl. Mat, 436 139149 (2013).
  • 18
    P. Frugier et al., “SON68 Nuclear Glass Dissolution Kinetics: Current State of Knowledge and Basis of the New GRAAL Model,” J. Nucl. Mat, 380 821 (2008).
  • 19
    I. S. Muller, S. Ribet, I. L. Pegg, S. Gin, and P. Frugier, “Characterisation of Alteration Phases on HLW Glasses After 15 years of PCT Leaching,” Proc. Am. Ceram. Soc., 176 191 (2005).
  • 20
    B. Grambow and D. M. Strachan, “Leach Testing of Waste Glasses Under Near-Saturation Conditions,” Mat. Res. Soc. Syrup. Proc., 26 623634 (1984).
  • 21
    J. J. Chen, J. K. Thomas, H. F. W. Taylor, and H. M. Jennings, “Solubility and Structure of Calcium Silicate Hydrate,” Cement Concr. Res., 34 14991519 (2004).
  • 22
    H. M. Jennings, “Aqueous Solubility Relationships for Two Types of Calcium Silicate Hydrate,” J. Am. Ceram. Soc., 69 614618 (1986).
  • 23
    S. Gin, “Protective Effect of the Alteration Gel: A Key Mechanism in the Long-Term Behaviour of Nuclear Waste Glass,” Proc. Mat. Res. Soc. Symp, 633 207215 (2001).
  • 24
    C. Cailleteau et al., “Insight into Silicate-Glass Corrosion Mechanisms,” Nat. Mater., 7 978983 (2008).
  • 25
    U. R. Berner,”Evolution of Pore Water Chemistry During Degradation of Cement in a Radioactive Waste Repository Environment,” Waste Manag., 12 201219 (1992).
  • 26
    P. Hrma, “Crystallisation During Processing of Nuclear Waste Glass”, J. Non-Cryst. Solids, 356 30193025 (2010).
  • 27
    S. Aggarwal, M. J. Angus, and J. Ketchen, “Sorption of Radionuclides to Specific Mineral Phases Present in Repository Cements”, AES Technology Report, AES-D&R-0395 (2000).
  • 28
    X. Gaona, E. Wieland, J. Tits, A. C. Sheinost, and R. Dahn, “Np(V/VI) Redox Chemistry in Cementitious Systems: XAFS Investigations on the Speciation Under Anoxic and Oxidising Conditions,” Appl. Geochem., 28 109118 (2013).