• horizontal gene transfer;
  • homologue;
  • molecular evolution;
  • Bombyx mori;
  • Danaus plexippus;
  • Heliconius melpomene


Eukaryotic horizontal gene transfer (HGT) events are increasingly being discovered yet few reports have summarized multiple occurrences in a wide range of species. We systematically investigated HGT events in the order Lepidoptera by employing a series of filters. Bombyx mori, Danaus plexippus and Heliconius melpomene had 13, 12 and 12 HGTs, respectively, from bacteria and fungi. These HGTs contributed a total of 64 predicted genes: 22 to B. mori, 22 to D. plexippus and 20 to H. melpomene. Several new genes were generated by post-transfer duplications. Post-transfer duplication of a suite of functional HGTs has rarely been reported in higher organisms. The distributional patterns of paralogues for certain genes differed in the three species, indicating potential independent duplication or loss events. All of these HGTs had homologues expressed in some other lepidopterans, indicating ancient transfer events. Most HGTs were involved in the metabolism of sugar and amino acids. These HGTs appeared to have experienced amelioration, purifying selection and accelerated evolution to adapt to the background genome of the recipient. The discovery of ancient, massive HGTs and duplications in lepidopterans and their adaptive evolution provides further insights into the evolutionary significance of the events from donors to multicellular host recipients.