SEARCH

SEARCH BY CITATION

References

  • Bartholomay, L.C., Waterhouse, R.M., Mayhew, G.F., Campbell, C.L., Michel, K., Zou, Z. et al. (2010) Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330: 8890.
  • Behura, S.K., Gomez-Machorro, C., Harker, B.W., deBruyn, B., Lovin, D.D., Hemme, R.R. et al. (2011) Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 5: e1385.
  • Bennett, K.E., Flick, D., Fleming, K.H., Jochim, R., Beaty, B.J. and Black, W.C. (2005) Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 170: 185194.
  • Bernhardt, S.A., Simmons, M.P., Olson, K.E., Beaty, B.J., Blair, C.D. and Black, W.C. (2012) Rapid intraspecific evolution of miRNA and siRNA genes in the mosquito Aedes aegypti. PLoS ONE 7: e44198.
  • Bonizzoni, M., Dunn, W.A., Campbell, C.L., Olson, K.E., Marinotti, O. and James, A.A. (2012) Complex modulation of the Aedes aegypti transcriptome in response to Dengue virus infection. PLoS ONE 7: e50512.
  • Bosio, C.F., Fulton, R.E., Salasek, M.L., Beaty, B.J. and Black, W.C. (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687698.
  • Brennecke, J., Stark, A., Russell, R.B. and Cohen, S.M. (2005) Principles of microRNA-target recognition. PLoS Biol 3: e85.
  • Campbell, C.L., Keene, K.M., Brackney, D.E., Olson, K.E., Blair, C.D., Wilusz, J. et al. (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47.
  • Chan, S.K. (1970) Phospholipid composition in the mitochondria of the housefly, Musca domestica: a re-examination. J Insect Physiol 16: 15751577.
  • Chauhan, C., Behura, S.K., Debruyn, B., Lovin, D.D., Harker, B.W., Gomez-Machorro, C. et al. (2012) Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection. PLoS ONE 7: e47350.
  • Colpitts, T.M., Cox, J., Vanlandingham, D.L., Feitosa, F.M., Cheng, G., Kurscheid, S. et al. (2011) Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7: e1002189.
  • Diederichs, S. and Haber, D.A. (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131: 10971108.
  • El-Bacha, T., Midlej, V., Pereira da Silva, A.P., Silva da Costa, L., Benchimol, M., Galina, A. et al. (2007) Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta 1772: 11581166.
  • Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D.S. (2003) MicroRNA targets in Drosophila. Genome Biol 5: R1.
  • Fang, Z. and Rajewsky, N. (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE 6: e18067.
  • Franz, A.W., Sanchez-Vargas, I., Adelman, Z.N., Blair, C.D., Beaty, B.J., James, A.A. et al. (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 103: 41984203.
  • Fukunaga, R., Han, B.W., Hung, J.H., Xu, J., Weng, Z. and Zamore, P.D. (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151: 533546.
  • Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S. et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
  • Gomez-Machorro, C., Bennett, K., del Lourdes Munoz, M. and Black, W.T. (2004) Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti. Insect Mol Biol 13: 637648.
  • Griffiths-Jones, S. (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342: 129138.
  • Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. and Rajewsky, N. (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1: e13.
  • Guo, X., Xu, Y., Bian, G., Pike, A.D., Xie, Y. and Xi, Z. (2010) Response of the mosquito protein interaction network to dengue infection. BMC Genomics 11: 380.
  • Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P. et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129141.
  • Hess, A.M., Prasad, A.N., Ptitsyn, A., Ebel, G.D., Olson, K.E., Barbacioru, C. et al. (2011) Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 11: 45.
  • Hussain, M., Walker, T., O'Neill, S.L. and Asgari, S. (2012) Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. Insect Biochem Mol Biol 43: 146152.
  • Keene, K.M., Foy, B.D., Sanchez-Vargas, I., Beaty, B.J., Blair, C.D. and Olson, K.E. (2004) RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci U S A 101: 1724017245.
  • Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39: 12781284.
  • Kozomara, A. and Griffiths-Jones, S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152D157.
  • Le Breton, M., Meyniel-Schicklin, L., Deloire, A., Coutard, B., Canard, B., de Lamballerie, X. et al. (2011) Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11: 234.
  • Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 1520.
  • Luo, D., Xu, T., Watson, R.P., Scherer-Becker, D., Sampath, A., Jahnke, W. et al. (2008) Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27: 32093219.
  • Martinez, N.J. and Gregory, R.I. (2013) Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19: 605612.
  • Miller, B.R. and Mitchell, C.J. (1991) Genetic selection of a flavivirus-refractory strain of the yellow fever mosquito Aedes aegypti. Am J Trop Med Hyg 45: 399407.
  • O'Toole, A.S., Miller, S., Haines, N., Zink, M.C. and Serra, M.J. (2006) Comprehensive thermodynamic analysis of 3′ double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res 34: 33383344.
  • Ocampo, C.B., Caicedo, P.A., Jaramillo, G., Ursic Bedoya, R., Baron, O., Serrato, I.M. et al. (2013) Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus. PLoS ONE 8: e61187.
  • Perera, R., Riley, C., Isaac, G., Hopf-Jannasch, A.S., Moore, R.J., Weitz, K.W. et al. (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8: e1002584.
  • Platt, K.B., Linthicum, K.J., Myint, K.S., Innis, B.L., Lerdthusnee, K. and Vaughn, D.W. (1997) Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57: 119125.
  • Preall, J.B. and Sontheimer, E.J. (2005) RNAi: RISC gets loaded. Cell 123: 543545.
  • Ramirez, J.L. and Dimopoulos, G. (2012) The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol 34: 625629.
  • Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139140.
  • Rodriguez-Andres, J., Rani, S., Varjak, M., Chase-Topping, M.E., Beck, M.H., Ferguson, M.C. et al. (2012) Phenoloxidase activity acts as a mosquito innate immune response against infection with Semliki Forest virus. PLoS Pathog 8: e1002977.
  • Sanchez-Vargas, I., Scott, J.C., Poole-Smith, B.K., Franz, A.W., Barbosa-Solomieu, V., Wilusz, J. et al. (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299.
  • Sanders, H.R., Foy, B.D., Evans, A.M., Ross, L.S., Beaty, B.J., Olson, K.E. et al. (2005) Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35: 12931307.
  • Sessions, O.M., Barrows, N.J., Souza-Neto, J.A., Robinson, T.J., Hershey, C.L., Rodgers, M.A. et al. (2009) Discovery of insect and human dengue virus host factors. Nature 458: 10471050.
  • Sim, S., Ramirez, J.L. and Dimopoulos, G. (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 8: e1002631.
  • Souza-Neto, J.A., Sim, S. and Dimopoulos, G. (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106: 1784117846.
  • Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K., Walther, P. et al. (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5: 365375.
  • Xi, Z., Ramirez, J.L. and Dimopoulos, G. (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098.