SEARCH

SEARCH BY CITATION

References

  • 1
    von Gunten S, Bochner BS. Basic and clinical immunology of siglecs. Ann N Y Acad Sci. 2008; 1143:6182.
  • 2
    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:25566.
  • 3
    Crocker PR, Clark EA, Filbin M et al. Siglecs: a family of sialic-acid binding lectins. Glycobiology 1998; 8:vvi
  • 4
    Crocker PR, Redelinghuys P. Siglecs as positive and negative regulators of the immune system. Biochem Soc Trans 2008; 36:146771.
  • 5
    Crocker PR, Varki A. Siglecs, sialic acids and innate immunity. Trends Immunol 2001; 22:33742.
  • 6
    Crocker PR, Varki A. Siglecs in the immune system. Immunology 2001; 103:13745.
  • 7
    Kelm S, Schauer R, Crocker PR. The sialoadhesins – a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J 1996; 13:91326.
  • 8
    O'Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009; 30:2408.
  • 9
    Varki A, Angata T. Siglecs – the major subfamily of I-type lectins. Glycobiology 2006; 16:1R27R.
  • 10
    Martinez-Pomares L, Gordon S. CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol 2012; 33:6670.
  • 11
    Ludewig B, Cervantes-Barragan L. CD169+ macrophages take the bullet. Nat Immunol 2012; 13:134.
  • 12
    Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007; 446:10239.
  • 13
    Crocker PR, Gordon S. Isolation and characterization of resident stromal macrophages and hematopoietic-cell clusters from mouse bone-marrow. J Exp Med 1985; 162:9931014.
  • 14
    Crocker PR, Gordon S. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J Exp Med 1986; 164:186275.
  • 15
    Kelm S, Pelz A, Schauer R et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 1994; 4:96572.
  • 16
    Williams AF, Barclay AN. The immunoglobulin superfamily – domains for cell-surface recognition. Annu Rev Immunol 1988; 6:381405.
  • 17
    Crocker PR, Mucklow S, Bouckson V et al. Sialoadhesin, a macrophage sialic-acid binding-receptor for hematopoietic-cells with 17 immunoglobulin-like domains. EMBO J 1994; 13:4490503.
  • 18
    Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 2001; 97:28896.
  • 19
    Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton DM, Paulson JC, Gordon S. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 1991; 10:16619.
  • 20
    Nath D, Vandermerwe PA, Kelm S, Bradfield P, Crocker PR. The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid-binding site – comparison with CD22. J Biol Chem 1995; 270:2618491.
  • 21
    Kelm S, Schauer R, Manuguerra JC, Gross HJ, Crocker PR. Modifications of cell-surface sialic acids modulate cell-adhesion mediated by sialoadhesin and CD22. Glycoconj J 1994; 11:57685.
  • 22
    Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. Sialoside specificity of the siglec family assessed using novel multivalent probes – identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 2003; 278:3100719.
  • 23
    Hashimoto Y, Suzuki M, Crocker PR, Suzuki A. A streptavidin-based neoglycoprotein carrying more than 140 GT1b oligosaccharides: quantitative estimation of the binding specificity of murine sialoadhesin expressed on CHO cells. J Biochem 1998; 123:46878.
  • 24
    May AP, Robinson RC, Vinson M, Crocker PR, Jones EY. Crystal structure of the N-terminal domain of sialoadhesin in complex with 3’ sialyllactose at 1.85 angstrom resolution. Mol Cell 1998; 1:71928.
  • 25
    Crocker PR, Hartnell A, Munday J, Nath D. The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconj J 1997; 14:6019.
  • 26
    Nakamura K, Yamaji T, Crocker PR, Suzuki A, Hashimoto Y. Lymph node macrophages, but not spleen macrophages, express high levels of unmasked sialoadhesin: implication for the adhesive properties of macrophages in vivo. Glycobiology 2002; 12:20916.
  • 27
    Crocker PR, Gordon S. Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal-antibody. J Exp Med 1989; 169:133346.
  • 28
    Dijkstra CD, Dopp EA, Joling P, Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs – distinct macrophage subpopulations in the rat recognised by the monoclonal antibody-ED1, antibody-ED2 and antibody-ED3. Immunology 1985; 54:58999.
  • 29
    Revilla C, Poderoso T, Martinez P, Alvarez B, Lopez-Fuertes L, Alonso F, Ezquerra A, Dominguez J. Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells. Vet Res 2009; 40:14.
  • 30
    Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5:60616.
  • 31
    Steiniger B, Barth P, Herbst B, Hartnell A, Crocker PR. The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 1997; 92:30716.
    Direct Link:
  • 32
    Brinkman-Van der Linden ECM, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A. Loss of N-glycolylneuraminic acid in human evolution – implications for sialic acid recognition by siglecs. J Biol Chem 2000; 275:863340.
  • 33
    Kraal G, Mebius R. New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 2006; 250:175215.
  • 34
    Ducreux J, Crocker PR, Vanbever R. Analysis of sialoadhesin expression on mouse alveolar macrophages. Immunol Lett 2009; 124:7780.
  • 35
    Hume DA, MacDonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012; 119:181020.
  • 36
    Witmerpack MD, Hughes DA, Schuler G, Lawson L, McWilliam A, Inaba K, Steinman RM, Gordon S. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci 1993; 104:10219.
  • 37
    Cecchini MG, Dominguez MG, Mocci S et al. Role of colony-stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal-development of the mouse. Development 1994; 120:135772.
  • 38
    Hashimoto D, Chow A, Greter M et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J Exp Med 2011; 208:106982.
  • 39
    Junt T, Scandella E, Ludewig B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 2008; 8:76475.
  • 40
    Matsumoto M, Mariathasan S, Nahm MH, Baranyay F, Peschon JJ, Chaplin DD. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 1996; 271:128991.
  • 41
    Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 1997; 6:491500.
  • 42
    Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol 2009; 10:786U153.
  • 43
    Nolte MA, Arens R, Kraus M, van Oers MHJ, Kraal G, van Lier RAW, Mebius RE. B cells are crucial for both development and maintenance of the splenic marginal zone. J Immunol 2004; 172:36207.
  • 44
    Junt T, Tumanov AV, Harris N et al. Expression of lymphotoxin β governs immunity at two distinct levels. Eur J Immunol 2006; 36:206175.
  • 45
    Moseman EA, Iannacone M, Bosurgi L et al. B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 2012; 36:41526.
  • 46
    York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I Interferons and Toll-like receptor agonists. Arthritis Rheum 2007; 56:101020.
  • 47
    Rempel H, Calosing C, Sun B, Pulliam L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS ONE 2008; 3:e1967.
  • 48
    Chen WC, Kawasaki N, Nycholat CM, Han S, Pilotte J, Crocker PR, Paulson JC. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS ONE 2012; 7:e39039.
  • 49
    Gessl A, Boltznitulescu G, Wiltschke C, Holzinger C, Nemet H, Pernerstorfer T, Forster O. Expression of a binding structure for sialic acid-containing glycoconjugates on rat bone marrow-derived macrophages and its modulation by IFN, TNF-α, and dexamethasone. J Immunol 1989; 142:43727.
  • 50
    vandenBerg T, vanDie I, deLavalette CR et al. Regulation of sialoadhesin expression on rat macrophages – induction by glucocorticoids and enhancement by IFN-β, IFN-γ, IL-4, and lipopolysaccharide. J Immunol 1996; 157:31308.
  • 51
    Delputte PL, Van Breedam W, Barbe F, Van Reeth K, Nauwynck HJ. IFN-α treatment enhances porcine Arterivirus infection of monocytes via upregulation of the porcine Arterivirus receptor sialoadhesin. J Interferon Cytokine Res 2007; 27:75766.
  • 52
    Crocker PR, Hill M, Gordon S. Regulation of a murine macrophage hemagglutinin (sheep erythrocyte receptor) by a species-restricted serum factor. Immunology 1988; 65:51522.
  • 53
    McWilliam AS, Tree P, Gordon S. Interleukin-4 regulates induction of sialoadhesin, the macrophage sialic acid-specific receptor. Proc Natl Acad Sci USA 1992; 89:105226.
  • 54
    Perry VH, Crocker PR, Gordon S. The blood–brain barrier regulates the expression of a macrophage sialic acid-binding receptor on microglia. J Cell Sci 1992; 101:2017.
  • 55
    Mebius RE, Hendriks HR, Breve J, Kraal G. Macrophages and the activity of high endothelial venules – the effect of interferon-γ. Eur J Immunol 1990; 20:16158.
  • 56
    Damoiseaux J, Dopp EA, Beelen RHJ, Dijkstra CD. Rat bone-marrow and monocyte cultures – influence of culture time and lymphokines on the expression of macrophage differentiation antigens. J Leukoc Biol 1989; 46:24653.
  • 57
    Crocker PR, Werb Z, Gordon S, Bainton DF. Ultrastructural-localization of a macrophage-restricted sialic acid-binding hemagglutinin, SER, in macrophage-hemapoietic cell clusters. Blood 1990; 76:11318.
  • 58
    Oetke C, Vinson MC, Jones C, Crocker PR. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-Cell populations and reduced immunoglobulin M levels. Mol Cell Biol 2006; 26:154957.
  • 59
    Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR, Sorokin LM. Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. J Immunol 2009; 182:650816.
  • 60
    Ip CW, Kroner A, Crocker PR, Nave KA, Martini R. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol Dis 2007; 25:10511.
  • 61
    Jiang HR, Hwenda L, Makinen K, Oetke C, Crocker PR, Forrester JV. Sialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis. J Immunol 2006; 177:225864.
  • 62
    Rocha M, Umansky V, Lee KH, Hacker HJ, Benner A, Schirrmacher V. Differences between graft-versus-leukemia and graft-versus-host reactivity.1. Interaction of donor immune T cells with tumor and/or host cells. Blood 1997; 89:2189202.
  • 63
    Muerkoster S, Rocha M, Crocker PR, Schirrmacher V, Umansky V. Sialoadhesin-positive host macrophages play an essential role in graft-versus-leukemia reactivity in mice. Blood 1999; 93:437586.
  • 64
    Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van Damme J, van Woensel PA, Nauwynck HJ. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 2003; 77:820715.
  • 65
    Jones C, Virji M, Crocker PR. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 2003; 49:121325.
  • 66
    Monteiro VG, Lobato CSS, Silva AR, Medina DV, de Oliveira MA, Seabra SH, de Souza W, DaMatta RA. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res 2005; 97:3805.
  • 67
    Heikema AP, Bergman MP, Richards H et al. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun 2010; 78:323746.
  • 68
    Delputte PL, Van Gorp H, Favoreel HW et al. Porcine sialoadhesin (CD169/siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS ONE 2011; 6:e16827.
  • 69
    Crocker PR, Freeman S, Gordon S, Kelm S. Sialoadhesin binds preferentially to cells of the granulocytic lineage. J Clin Invest 1995; 95:63543.
  • 70
    Vandenberg TK, Breve JJP, Damoiseaux J, Dopp EA, Kelm S, Crocker PR, Dijkstra CD, Kraal G. Sialoadhesin on macrophages – its identification as a lymphocyte adhesion molecule. J Exp Med 1992; 176:64755.
  • 71
    van den Berg TK, Nath D, Ziltener HJ, Vestweber D, Fukuda M, van Die I, Crocker PR. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J Immunol 2001; 166:363740.
  • 72
    Nath D, Hartnell A, Happerfield L, Miles DW, Burchell J, Taylor-Papadimitriou J, Crocker PR. Macrophage–tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 1999; 98:2139.
    Direct Link:
  • 73
    Martinez-Pomares L, Crocker PR, Da Silva R, Holmes N, Colominas C, Rudd P, Dwek R, Gordon S. Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 1999; 274:352118.
  • 74
    Kumamoto Y, Higashi N, Denda-Nagai K, Tsuiji M, Sato K, Crocker PR, Irimura T. Identification of sialoadhesin as a dominant lymph node counter-receptor for mouse macrophage galactose-type C-type lectin 1. J Biol Chem 2004; 279:4927480.
  • 75
    Iannacone M, Moseman EA, Tonti E et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 2010; 465:1079U143.
  • 76
    Junt T, Moseman EA, Iannacone M et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 2007; 450:1104.
  • 77
    Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 2010; 11:303U48.
  • 78
    Asano K, Nabeyama A, Miyake Y et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 2011; 34:8595.
  • 79
    den Haan JM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun 2012; 4:43745
  • 80
    McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MCI. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 2011; 117:540312.
  • 81
    Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M, Tanaka M. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest 2007; 117:226878.
  • 82
    Backer R, Schwandt T, Greuter M et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc Natl Acad Sci USA 2010; 107:21621.
  • 83
    Honke N, Shaabani N, Cadeddu G et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol 2012; 13:51U131.
  • 84
    Poderoso T, Martinez P, Alvarez B et al. Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine 2011; 29:481320.
  • 85
    Chtanova T, Han S-J, Schaeffer M, van Dooren GG, Herzmark P, Striepen B, Robey EA. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 2009; 31:34255.
  • 86
    Chow A, Lucas D, Hidalgo A et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208:26171.
  • 87
    Kallio EA, Koskinen PK, Aavik E, Vaali K, Lemstom KB. Role of nitric oxide in experimental obliterative bronchiolitis (chronic rejection) in the rat. J Clin Invest 1997; 100:298494.
  • 88
    Myllarniemi LM, Rasilainen SK, Lemstrom KB, Hayry PJ. Enhanced intimal proliferation upon injury to pre-existing neointima and resistance of neointimal cells to cell death. Cardiovasc Pathol 1999; 8:33947.
  • 89
    Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW. New expression of myelomonocytis antigens by microglia and perivascular cells following lethal motor-neuron injury. J Neuroimmunol 1990; 27:12132.
  • 90
    Gijbels MJJ, van der Cammen M, van der Laan LJW, Emeis JJ, Havekes LM, Hofker MH, Kraal G. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice: an immunohistochemical study. Atherosclerosis 1999; 143:1525.
  • 91
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454:43644.
  • 92
    Umansky V, Beckhove P, Rocha M, Kruger A, Crocker PR, Schirrmacher V. A role for sialoadhesin-positive tissue macrophages in host resistance to lymphoma metastasis in vivo. Immunology 1996; 87:3039.
  • 93
    Muerkoster S, Wachowski O, Zerban H, Schirrmacher V, Umansky V, Rocha M. Graft-versus-leukemia reactivity involves cluster formation between superantigen-reactive donor T lymphocytes and host macrophages. Clin Cancer Res 1998; 4:3095106.
  • 94
    Muerkoster S, Laman JD, Rocha M, Umansky V, Schirrmacher V. Functional and in situ evidence for nitric oxide production driven by CD40–CD40L interactions in graft-versus-leukemia reactivity. Clin Cancer Res 2000; 6:198896.
  • 95
    Heuff G, Vanderende MB, Boutkan H et al. Macrophage populations in different stages of induced hepatic metastases in rats – an immunohistochemical analysis. Scand J Immunol 1993; 38:106.
  • 96
    Landstrom M, Funa K. Apoptosis in rat prostatic adenocarcinoma is associated with rapid infiltration of cytotoxic T-cells and activated macrophages. Int J Cancer 1997; 71:4515.
  • 97
    Yamashiro S, Takeya M, Nishi T, Kuratsu J, Yoshimura T, Ushio Y, Takahashi K. Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat-tumors. Am J Pathol 1994; 145:85667.
  • 98
    Yamashiro S, Takeya M, Kuratsu J, Ushio Y, Takahashi K, Yoshimura T. Intradermal injection of monocyte chemoattractant protein-1 induces emigration and differentiation of blood monocytes in rat skin. Int Arch Allergy Immunol 1998; 115:1523.
  • 99
    Marmey M, Boix C, Barbaroux JB et al. CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+ CD169 monocyte-derived cells in diffuse large B-cell lymphomas. Hum Pathol 2006; 37:6877.
  • 100
    Dijkstra CD, Dopp EA, Vogels IMC, Vannoorden CJF. Macrophages and dendritic cells in antigen-induced arthritis – an immunohistochemical study using cryostat sections of the whole knee-joint of rat. Scand J Immunol 1987; 26:51323.
  • 101
    Verschure PJ, Vannoorden CJF, Dijkstra CD. Macrophages and dendritic cells during the early stages of antigen-induced arthritis in rats – immunohistochemical analysis of cryostat sections of the whole knee-joint. Scand J Immunol 1989; 29:37181.
  • 102
    Kool J, Gerritsboeye MY, Severijnen AJ, Hazenberg MP. Immunohistology of joint inflammation induced in rats by cell-wall fragments of Eubacterium aerofaciens. Scand J Immunol 1992; 36:497506.
  • 103
    Carol M, Pelegri C, Castellote C, Franch A, Castell M. Immunohistochemical study of lymphoid tissues in adjuvant arthritis (AA) by image analysis; relationship with synovial lesions. Clin Exp Immunol 2000; 120:2008.
  • 104
    Chou RC, Dong XL, Noble BK, Knight PR, Spengler RN. Adrenergic regulation of macrophage-derived tumor necrosis factor-α generation during a chronic polyarthritis pain model. J Neuroimmunol 1998; 82:1408.
  • 105
    Richards PJ, Williams AS, Goodfellow RM, Williams BD. Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis. Rheumatology 1999; 38:81825.
  • 106
    Kluth DC, Erwig LP, Rees AJ. Multiple facets of macrophages in renal injury. Kidney Int 2004; 66:54257.
  • 107
    Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest 2008; 118:352230.
  • 108
    Lan HY, Nikolicpaterson DJ, Mu W, Atkins RC. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int 1995; 48:75360.
  • 109
    Lan HY, Nikolicpaterson DJ, Atkins RC. Trafficking of inflammatory macrophages from the kidney to draining lymph-nodes during experimental glomerulonephritis. Clin Exp Immunol 1993; 92:33641.
  • 110
    Erwig LP, Rees AJ. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press Res 1999; 22:215.
  • 111
    Lai PC, Cook HT, Smith J, Keith JC, Pusey CD, Tam FWK. Interleukin-11 attenuates nephrotoxic nephritis in Wistar Kyoto rats. J Am Soc Nephrol 2001; 12:231020.
  • 112
    Yamate J, Machida Y, Ide M, Kuwamura M, Sawamoto O, LaMarre J. Effects of lipopolysaccharide on the appearance of macrophage populations and fibrogenesis in cisplatin-induced rat renal injury. Exp Toxicol Pathol 2004; 56:1324.
  • 113
    Cook HT, Singh SJ, Wembridge DE, Smith J, Tam FWK, Pusey CD. Interleukin-4 ameliorates crescentic glomerulonephritis in Wistar Kyoto rats. Kidney Int 1999; 55:131926.
  • 114
    Karkar AM, Smith J, Tam FWK, Pusey CD, Rees AJ. Abrogation of glomerular injury in nephrotoxic nephritis by continuous infusion of interleukin-6. Kidney Int 1997; 52:131320.
  • 115
    Aki K, Shimizu A, Masuda Y et al. ANG II receptor blockade enhances anti-inflammatory macrophages in anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol 2010; 298:F87082.
  • 116
    Wilson HM, Stewart KN, Brown PAJ, Anegon I, Chettibi S, Rees AJ, Kluth DC. Bone-marrow-derived macrophages genetically modified to produce IL-10 reduce injury in experimental glomerulonephritis. Mol Ther 2002; 6:7107.
  • 117
    Ikezumi Y, Suzuki T, Hayafuji S, Okubo S, Nikolic-Paterson DJ, Kawachi H, Shimizu F, Uchiyama M. The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis. Nephrol Dial Transplant 2005; 20:270413.
  • 118
    Kobsar I, Oetke C, Kroner A, Wessig C, Crocker P, Martini R. Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0. Mol Cell Neurosci 2006; 31:68591.
  • 119
    Damoiseaux J, Huitinga I, Dopp EA, Dijkstra CD. Expression of the ED3 antigen on rat macrophages in relation to experimental autoimmune diseases. Immunobiology 1992; 184:31120.
  • 120
    Polman CH, Dijkstra CD, Sminia T, Koetsier JC. Immunohistological analysis of macrophages in the central-nervous-system of Lewis rats with acute experimental allergic encephalomyelitis. J Neuroimmunol 1986; 11:21522.
  • 121
    Broekhuyse RM, Kuhlmann ED, Peters TA, Kuijpers W. Macrophage subpopulations and RPE elimination in the pathogenesis of experimental autoimmune pigment epithelial protein-induced uveitis (EAPU). Exp Eye Res 1996; 62:4719.