• 1
    Hillhouse EE, Lesage S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 2012. Doi: 10.1016/j.jaut.2012.07.010.
  • 2
    Juvet SC, Zhang L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 2012; 4:4858.
  • 3
    D'Acquisto F, Crompton T. CD3+CD4CD8 (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol 2011; 82:33340.
  • 4
    Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 2000; 6:7829.
  • 5
    Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol 2003; 4:815.
  • 6
    von Boehmer H, Kirberg J, Rocha B. An unusual lineage of α/β T cells that contains autoreactive cells. J Exp Med 1991; 174:10018.
  • 7
    Terrence K, Pavlovich CP, Matechak EO, Fowlkes BJ. Premature expression of T cell receptor (TCR) αβ suppresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J Exp Med 2000; 192:53748.
  • 8
    Caveno J, Zhang Y, Motyka B, Teh SJ, Teh HS. Functional similarity and differences between selection-independent CD4CD8 αβ T cells and positively selected CD8 T cells expressing the same TCR and the induction of anergy in CD4CD8 αβ T cells in antigen-expressing mice. J Immunol 1999; 163:12229.
  • 9
    Viret C, Janeway CA Jr. Self-specific MHC class II-restricted CD4CD8 T cells that escape deletion and lack regulatory activity. J Immunol 2003; 170:2019.
  • 10
    Fritsch M, Andersson A, Petersson K, Ivars F. A TCR α chain transgene induces maturation of CD4 CD8 αβ+ T cells from γδ T cell precursors. Eur J Immunol 1998; 28:82837.
  • 11
    Bruno L, Fehling HJ, von Boehmer H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 1996; 5:34352.
  • 12
    Kreslavsky T, Garbe AI, Krueger A, von Boehmer H. T cell receptor-instructed αβ versus γδ lineage commitment revealed by single-cell analysis. J Exp Med 2008; 205:117386.
  • 13
    Haks MC, Lefebvre JM, Lauritsen JP, Carleton M, Rhodes M, Miyazaki T, Kappes DJ, Wiest DL. Attenuation of γδTCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 2005; 22:595606.
  • 14
    Hayes SM, Li L, Love PE. TCR signal strength influences αβ/γδ lineage fate. Immunity 2005; 22:58393.
  • 15
    Egawa T, Kreslavsky T, Littman DR, von Boehmer H. Lineage diversion of T cell receptor transgenic thymocytes revealed by lineage fate mapping. PLoS ONE 2008; 3:e1512.
  • 16
    Budd RC, Schreyer M, Miescher GC, MacDonald HR. T cell lineages in the thymus of lpr/lpr mice. Evidence for parallel pathways of normal and abnormal T cell development. J Immunol 1987; 139:220010.
  • 17
    Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, Strober W. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest 1992; 90:33441.
  • 18
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994; 76:96976.
  • 19
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356:3147.
  • 20
    Bleesing JJ, Brown MR, Dale JK, Straus SE, Lenardo MJ, Puck JM, Atkinson TP, Fleisher TA. TcR-αβ+ CD4CD8 T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin Immunol 2001; 100:31424.
  • 21
    Stranges PB, Watson J, Cooper CJ et al. Elimination of antigen-presenting cells and autoreactive T cells by fas contributes to prevention of autoimmunity. Immunity 2007; 26:62941.
  • 22
    Weant AE, Michalek RD, Khan IU, Holbrook BC, Willingham MC, Grayson JM. Apoptosis regulators bim and fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 2008; 28:21830.
  • 23
    Hutcheson J, Scatizzi JC, Siddiqui AM et al. Combined deficiency of proapoptotic regulators bim and fas results in the early onset of systemic autoimmunity. Immunity 2008; 28:20617.
  • 24
    Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators fas and bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008; 28:197205.
  • 25
    Zhang D, Yang W, Degauque N, Tian Y, Mikita A, Zheng XX. New differentiation pathway for double-negative regulatory T cells that regulates the magnitude of immune responses. Blood 2007; 109:40719.
  • 26
    Ford MS, Zhang ZX, Chen W, Zhang L. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T Cell precursors. J Immunol 2006; 177:28039.
  • 27
    Van Laethem F, Sarafova SD, Park JH et al. Deletion of CD4 and CD8 coreceptors permits generation of αβT cells that recognize antigens independently of the MHC. Immunity 2007; 27:73550.
  • 28
    Tikhonova AN, Van Laethem F, Hanada K et al. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 2012; 36:7991.
  • 29
    Dugas V, Beauchamp C, Chabot-Roy G, Hillhouse EE, Lesage S. Implication of the CD47 pathway in autoimmune diabetes. J Autoimmun 2010; 35:2332.
  • 30
    Bank I, DePinho RA, Brenner MB, Cassimeris J, Alt FW, Chess L. A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 1986; 322:17981.
  • 31
    Lew AM, Pardoll DM, Maloy WL et al. Characterization of T cell receptor γ chain expression in a subset of murine thymocytes. Science 1986; 234:14015.
  • 32
    Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997; 15:53562.
  • 33
    Allen PM, Matsueda GR, Evans RJ, Dunbar JB Jr, Marshall GR, Unanue ER. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature 1987; 327:7135.
  • 34
    Ho WY, Cooke MP, Goodnow CC, Davis MM. Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J Exp Med 1994; 179:153949.
  • 35
    Priatel JJ, Utting O, Teh HS. TCR/self-antigen interactions drive double-negative T cell peripheral expansion and differentiation into suppressor cells. J Immunol 2001; 167:618894.
  • 36
    Hillhouse EE, Beauchamp C, Chabot-Roy G, Dugas V, Lesage S. Interleukin-10 limits the expansion of immunoregulatory CD4CD8 T cells in autoimmune-prone non-obese diabetic mice. Immunol Cell Biol 2010; 88:77180.
  • 37
    Lesage S, Hartley SB, Akkaraju S, Wilson J, Townsend M, Goodnow CC. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med 2002; 196:117588.
  • 38
    Akkaraju S, Ho WY, Leong D, Canaan K, Davis MM, Goodnow CC. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 1997; 7:25571.
  • 39
    Van Parijs L, Peterson DA, Abbas AK. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 1998; 8:26574.
  • 40
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003; 4:3504.
  • 41
    Zhang M, Vacchio MS, Vistica BP et al. T cell tolerance to a neo-self antigen expressed by thymic epithelial cells: the soluble form is more effective than the membrane-bound form. J Immunol 2003; 170:395462.
  • 42
    Liston A, Gray DH, Lesage S et al. Gene dosage–limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 2004; 200:101526.
  • 43
    Liston A, Lesage S, Gray DH et al. Generalized resistance to thymic deletion in the NOD mouse; a polygenic trait characterized by defective induction of Bim. Immunity 2004; 21:81730.
  • 44
    Guimont-Desrochers F, Beauchamp C, Chabot-Roy G et al. Absence of CD47 in vivo influences thymic dendritic cell subset proportions but not negative selection of thymocytes. Int Immunol 2009; 21:16777.
  • 45
    Baldwin TA, Sandau MM, Jameson SC, Hogquist KA. The timing of TCRα expression critically influences T cell development and selection. J Exp Med 2005; 202:11121.
  • 46
    Labrecque N, Baldwin T, Lesage S. Molecular and genetic parameters defining T-cell clonal selection. Immunol Cell Biol 2011; 89:1626.
  • 47
    Bhandoola A, von Boehmer H, Petrie HT, Zuniga-Pflucker JC. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 2007; 26:67889.
  • 48
    Terszowski G, Muller SM, Bleul CC et al. Evidence for a functional second thymus in mice. Science 2006; 312:2847.
  • 49
    Dooley J, Erickson M, Gillard GO, Farr AG. Cervical thymus in the mouse. J Immunol 2006; 176:648490.
  • 50
    Mixter PF, Russell JQ, Morrissette GJ, Charland C, Aleman-Hoey D, Budd RC. A model for the origin of TCR-αβ+ CD4CD8 B220+ cells based on high affinity TCR signals. J Immunol 1999; 162:574756.
  • 51
    Illes Z, Waldner H, Reddy J, Anderson AC, Sobel RA, Kuchroo VK. Modulation of CD4 co-receptor limits spontaneous autoimmunity when high-affinity transgenic TCR specific for self-antigen is expressed on a genetically resistant background. Int Immunol 2007; 19:123548.
  • 52
    Pobezinsky LA, Angelov GS, Tai X, Jeurling S, Van Laethem F, Feigenbaum L, Park JH, Singer A. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat Immunol 2012; 13:56978.