• 1
    Hayday AC. γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18:9751026.
  • 2
    Hein WR, Mackay CR. Prominence of γδ T cells in the ruminant immune system. Immunol Today 1991; 12:304.
  • 3
    Jutila MA, Holderness J, Graff JC, Hedges JF. Antigen-independent priming: a transitional response of bovine γδ T-cells to infection. Anim Health Res Rev 2008; 9:4757.
  • 4
    Bonneville M, O'Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:46778.
  • 5
    Li X, Kang N, Zhang X, Dong X, Wei W, Cui L, Ba D, He W. Generation of human regulatory γδ T cells by TCR γδ stimulation in the presence of TGF-β and their involvement in the pathogenesis of systemic lupus erythematosus. J Immunol 2011; 186:6693700.
  • 6
    Casetti R, Agrati C, Wallace M, Sacchi A, Martini F, Martino A, Rinaldi A, Malkovsky M. Cutting edge: TGF-β1 and IL-15 induce FOXP3+γδ regulatory T cells in the presence of antigen stimulation. J Immunol 2009; 183:35747.
  • 7
    Hoek A, Rutten VP, Kool J, Arkesteijn GJ, Bouwstra RJ, Van Rhijn I, Koets AP. Subpopulations of bovine WC1+ γδ T cells rather than CD4+ CD25high Foxp3+ T cells act as immune regulatory cells ex vivo. Vet Res 2009; 40:6.
  • 8
    Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D. Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci 2011; 68:235770.
  • 9
    Kerns HM, Jutila MA, Hedges JF. The distinct response of γδ T cells to the Nod2 agonist muramyl dipeptide. Cell Immunol 2009; 257:3843.
  • 10
    Hedges JF, Lubick KJ, Jutila MA. γδ T cells respond directly to pathogen-associated molecular patterns. J Immunol 2005; 174:604553.
  • 11
    Gibbons DL, Haque SF, Silberzahn T, Hamilton K, Langford C, Ellis P, Carr R, Hayday AC. Neonates harbour highly active γδ T cells with selective impairments in preterm infants. Eur J Immunol 2009; 39:1794806.
  • 12
    Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D. Direct costimulatory effect of TLR3 ligand poly(I:C) on human γδ T lymphocytes. J Immunol 2006; 176:134854.
  • 13
    Hedges JF, Cockrell D, Jackiw L, Meissner N, Jutila MA. Differential mRNA expression in circulating γδ T lymphocyte subsets defines unique tissue-specific functions. J Leuk Biol 2003; 73:30614.
  • 14
    Graff JC, Behnke M, Radke J, White M, Jutila MA. A comprehensive SAGE database for the analysis of γδ T cells. Int Immunol 2006; 18:61326.
  • 15
    Meissner N, Radke J, Hedges JF, White M, Behnke M, Bertolino S, Abrahamsen N, Jutila MA. Serial analysis of gene expression in circulating γδ T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles. J Immunol 2003; 170:35664.
  • 16
    Blumerman SL, Herzig CT, Baldwin CL. WC1+ γδ T cell memory population is induced by killed bacterial vaccine. Eur J Immunol 2007; 37:120416.
  • 17
    Blumerman SL, Herzig CT, Wang F, Coussens PM, Baldwin CL. Comparison of gene expression by co-cultured WC1+ γδ and CD4+ αβ T cells exhibiting a recall response to bacterial antigen. Mol Immunol 2007; 44:202335.
  • 18
    Chen C, Herzig CT, Telfer JC, Baldwin CL. Antigenic basis of diversity in the γδ T cell co-receptor WC1 family. Mol Immunol 2009; 46:256575.
  • 19
    Rogers AN, Vanburen DG, Zou B, Lahmers KK, Herzig CT, Brown WC, Telfer JC, Baldwin CL. Characterization of WC1 co-receptors on functionally distinct subpopulations of ruminant γδ T cells. Cell Immunol 2006; 239:15161.
  • 20
    Wijngaard PL, MacHugh ND, Metzelaar MJ, Romberg S, Bensaid A, Pepin L, Davis WC, Clevers HC. Members of the novel WC1 gene family are differentially expressed on subsets of bovine CD4 CD8 γδ T lymphocytes. J Immunol 1994; 152:347682.
  • 21
    Rogers AN, VanBuren DG, Hedblom E, Tilahun ME, Telfer JC, Baldwin CL. Function of ruminant γδ T cells is defined by WC1.1 or WC1.2 isoform expression. Vet Immunol Immunopathol 2005; 108:2117.
  • 22
    Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL. γδ T cell function varies with the expressed WC1 coreceptor. J Immunol 2005; 174:338693.
  • 23
    Wang F, Herzig CT, Chen C, Hsu H, Baldwin CL, Telfer JC. Scavenger receptor WC1 contributes to the γδ T cell response to Leptospira. Mol Immunol 2011; 48:8019.
  • 24
    Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC. The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates γδ T cell clones that express unique T cell receptors. J Leuk Biol 2005; 77:199208.
  • 25
    Stanton A. Challenges and opportunities for managing respiratory disease in dairy calves. Anim Health Res Rev 2009; 10:1135.
  • 26
    Miles DG. Overview of the North American beef cattle industry and the incidence of bovine respiratory disease (BRD). Anim Health Res Rev 2009; 10:1013.
  • 27
    Srikumaran S, Kelling CL, Ambagala A. Immune evasion by pathogens of bovine respiratory disease complex. Anim Health Res Rev 2007; 8:21529.
  • 28
    Bem RA, Domachowske JB, Rosenberg HF. Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 2011; 301:L14856.
  • 29
    Sacco RE, Nonnecke BJ, Palmer MV, Waters WR, Lippolis JD, Reinhardt TA. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS ONE 2012; 7:e33074.
  • 30
    Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine research and development. Comp Immunol Microbiol Infect Dis 2008; 31:191225.
  • 31
    Nair H, Nokes DJ, Gessner BD et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 2010; 375:154555.
  • 32
    Dodd J, Riffault S, Kodituwakku JS, Hayday AC, Openshaw PJ. Pulmonary V γ4+ γδ T cells have proinflammatory and antiviral effects in viral lung disease. J Immunol 2009; 182:117481.
  • 33
    Taylor G, Thomas LH, Wyld SG, Furze J, Sopp P, Howard CJ. Role of T-lymphocyte subsets in recovery from respiratory syncytial virus infection in calves. J Virol 1995; 69:665864.
  • 34
    Walker VP, Modlin RL. The vitamin D connection to pediatric infections and immune function. Pediatr Res 2009; 65:106R13R.
  • 35
    Fach SJ, Meyerholz DK, Gallup JM, Ackermann MR, Lehmkuhl HD, Sacco RE. Neonatal ovine pulmonary dendritic cells support bovine respiratory syncytial virus replication with enhanced interleukin (IL)-4 And IL-10 gene transcripts. Viral Immunol 2007; 20:11930.
  • 36
    Stabel JR, Kehrli ME Jr, Reinhardt TA, Nonnecke BJ. Functional assessment of bovine monocytes isolated from peripheral blood. Vet Immunol Immunopathol 1997; 58:14753.
  • 37
    Nelson CD, Nonnecke BJ, Reinhardt TA, Waters WR, Beitz DC, Lippolis JD. Regulation of Mycobacterium-specific mononuclear cell responses by 25-hydroxyvitamin D3. PLoS ONE 2011; 6:e21674.
  • 38
    Mount JA, Karrow NA, Caswell JL, Boermans HJ, Leslie KE. Assessment of bovine mammary chemokine gene expression in response to lipopolysaccharide, lipotechoic acid + peptidoglycan, and CpG oligodeoxynucleotide 2135. Can J Vet Res 2009; 73:4957.
  • 39
    Lee JW, Bannerman DD, Paape MJ, Huang MK, Zhao X. Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Vet Res 2006; 37:21929.
  • 40
    Nelson CD, Reinhardt TA, Beitz DC, Lippolis JD. In vivo activation of the intracrine vitamin D pathway in innate immune cells and mammary tissue during a bacterial infection. PLoS ONE 2010; 5:e15469.
  • 41
    Nelson CD, Reinhardt TA, Thacker TC, Beitz DC, Lippolis JD. Modulation of the bovine innate immune response by production of 1α,25-dihydroxyvitamin D(3) in bovine monocytes. J Dairy Sci 2010; 93:10419.
  • 42
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods 2001; 25:4028.
  • 43
    Kwong LS, Hope JC, Thom ML, Sopp P, Duggan S, Bembridge GP, Howard CJ. Development of an ELISA for bovine IL-10. Vet Immunol Immunopathol 2002; 85:21323.
  • 44
    Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF. Transcriptional profiling of γδ T cells identifies a role for vitamin D in the immunoregulation of the V γ9V δ2 response to phosphate-containing ligands. J Immunol 2005; 174:614452.
  • 45
    Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep 2011; 11:2936.
  • 46
    Daubenberger CA, Taracha EL, Gaidulis L, Davis WC, McKeever DJ. Bovine γδ T-cell responses to the intracellular protozoan parasite Theileria parva. Infect Immun 1999; 67:22419.
  • 47
    Lahmers KK, Hedges JF, Jutila MA, Deng M, Abrahamsen MS, Brown WC. Comparative gene expression by WC1+ γδ and CD4+ αβ T lymphocytes, which respond to Anaplasma marginale, demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1+ γδ T cells. J Leuk Biol 2006; 80:93952.
  • 48
    Price S, Davies M, Villarreal-Ramos B, Hope J. Differential distribution of WC1+ γδ TCR+ T lymphocyte subsets within lymphoid tissues of the head and respiratory tract and effects of intranasal M. bovis BCG vaccination. Vet Immunol Immunopathol 2010; 136:1337.
  • 49
    Silflow RM, Degel PM, Harmsen AG. Bronchoalveolar immune defense in cattle exposed to primary and secondary challenge with bovine viral diarrhea virus. Vet Immunol Immunopathol 2005; 103:12939.
  • 50
    Murakami K, Sentsui H, Inoshima Y, Inumaru S. Increase γδ T cells in the blood of cattle persistently infected with bovine leukemia virus following administration of recombinant bovine IFN-γ. Vet Immunol Immunopathol 2004; 101:6171.
  • 51
    Amadori M, Archetti IL, Verardi R, Berneri C. Role of a distinct population of bovine γδ T cells in the immune response to viral agents. Viral Immunol 1995; 8:8191.
  • 52
    Toka FN, Kenney MA, Golde WT. Rapid and transient activation of γδ T cells to IFN-γ production, NK cell-like killing, and antigen processing during acute virus infection. J Immunol 2011; 186:485361.
  • 53
    McInnes E, Sopp P, Howard CJ, Taylor G. Phenotypic analysis of local cellular responses in calves infected with bovine respiratory syncytial virus. Immunology 1999; 96:396403.
  • 54
    Thomas LH, Cook RS, Howard CJ, Gaddum RM, Taylor G. Influence of selective T-lymphocyte depletion on the lung pathology of gnotobiotic calves and the distribution of different T-lymphocyte subsets following challenge with bovine respiratory syncytial virus. Res Vet Sci 1996; 61:3844.
  • 55
    Chen ZW. Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci 2011; 68:240917.
  • 56
    Chen ZW, Letvin NL. Vγ2Vδ2+ T cells and anti-microbial immune responses. Microbes Infect 2003; 5:4918.
  • 57
    Selin LK, Santolucito PA, Pinto AK, Szomolanyi-Tsuda E, Welsh RM. Innate immunity to viruses: control of vaccinia virus infection by γδ T cells. J Immunol 2001; 166:678494.
  • 58
    Sciammas R, Kodukula P, Tang Q, Hendricks RL, Bluestone JA. T cell receptor-γδ cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 1997; 185:196975.
  • 59
    Wallace M, Malkovsky M, Carding SR. γδ T lymphocytes in viral infections. J Leuk Biol 1995; 58:27783.
  • 60
    Wilson E, Aydintug MK, Jutila MA. A circulating bovine gamma delta T cell subset, which is found in large numbers in the spleen, accumulates inefficiently in an artificial site of inflammation: correlation with lack of expression of E-selectin ligands and L-selectin. J Immunol 1999; 162:49149.
  • 61
    Wilson E, Hedges JF, Butcher EC, Briskin M, Jutila MA. Bovine γδ T cell subsets express distinct patterns of chemokine responsiveness and adhesion molecules: a mechanism for tissue-specific γδ T cell subset accumulation. J Immunol 2002; 169:49705.
  • 62
    Huang D, Chen CY, Ali Z et al. Antigen-specific Vγ2Vδ2 T effector cells confer homeostatic protection against pneumonic plaque lesions. Proc Natl Acad Sci USA 2009; 106:75538.
  • 63
    Kirby AC, Newton DJ, Carding SR, Kaye PM. Evidence for the involvement of lung-specific γδ T cell subsets in local responses to Streptococcus pneumoniae infection. Eur J Immunol 2007; 37:340413.
  • 64
    Plattner BL, Doyle RT, Hostetter JM. γδ T cell subsets are differentially associated with granuloma development and organization in a bovine model of mycobacterial disease. Int J Exp Pathol 2009; 90:58797.
  • 65
    Mora JR, Iwata M, Von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008; 8:68598.
  • 66
    Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-κB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol 2010; 184:96574.
  • 67
    Wejse C, Gomes VF, Rabna P et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2009; 179:84350.
  • 68
    Martineau AR, Wilkinson RJ, Wilkinson KA et al. A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med 2007; 176:20813.
  • 69
    Nelson CD, Reinhardt TA, Lippolis JD, Sacco RE, Nonnecke BJ. Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients 2012; 4:18196.
  • 70
    Jeffery LE, Burke F, Mura M et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 2009; 183:545867.
  • 71
    Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311:17703.
  • 72
    Brown WC, Davis WC, Choi SH, Dobbelaere DA, Splitter GA. Functional and phenotypic characterization of WC1+ γδ T cells isolated from Babesia bovis-stimulated T cell lines. Cell Immunol 1994; 153:927.
  • 73
    Sathiyaseelan T, Naiman B, Welte S, Machugh N, Black SJ, Baldwin CL. Immunological characterization of a γδ T-cell stimulatory ligand on autologous monocytes. Immunology 2002; 105:1819.
  • 74
    Machugh ND, Mburu JK, Carol MJ, Wyatt CR, Orden JA, Davis WC. Identification of two distinct subsets of bovine γδ T cells with unique cell surface phenotype and tissue distribution. Immunology 1997; 92:3405.
  • 75
    Clevers H, MacHugh ND, Bensaid A et al. Identification of a bovine surface antigen uniquely expressed on CD4 CD8 T cell receptor γδ+ T lymphocytes. Eur J Immunol 1990; 20:80917.
  • 76
    Mackay CR, Beya MF, Matzinger P. γδ T cells express a unique surface molecule appearing late during thymic development. Eur J Immunol 1989; 19:147783.
  • 77
    Morrison WI, Davis WC. Individual antigens of cattle. Differentiation antigens expressed predominantly on CD4 CD8 T lymphocytes (WC1, WC2). Vet Immunol Immunopathol 1991; 27:716.
  • 78
    Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL. Modulation of WC1, a lineage-specific cell surface molecule of γδ T cells augments cellular proliferation. Immunology 1996; 88:11623.
  • 79
    Wang F, Herzig C, Ozer D, Baldwin CL, Telfer JC. Tyrosine phosphorylation of scavenger receptor cysteine-rich WC1 is required for the WC1-mediated potentiation of TCR-induced T-cell proliferation. Eur J Immunol 2009; 39:25466.