• 1
    Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30:122.
  • 2
    Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:82336.
  • 3
    Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 2009; 16:57481.
  • 4
    Sarge KD. Male germ cell-specific alteration in temperature set point of the cellular stress response. J Biol Chem 1995; 270:187458.
  • 5
    Herendeen SL, VanBogelen RA, Neidhardt FC. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol 1979; 139:18594.
  • 6
    Morimoto R, Tissieres A, Georgopoulos C. Stress Proteins in Biology and Medicine. New York: Cold Spring Harbor Laboratory Press, 1990.
  • 7
    Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 2009; 61:3108.
  • 8
    Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009; 14:10511.
  • 9
    Shamaei-Tousi A, Steptoe A, O'Donnell K et al. Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors. Cell Stress Chaperones 2007; 12:38492.
  • 10
    Sandström ME, Siegler JC, Lovell RJ, Madden LA, McNaughton L. The effect of 15 consecutive days of heatexercise acclimation on heat shock protein 70. Cell Stress Chaperones 2008; 13:16975.
  • 11
    Fischer CP, Hiscock NJ, Basu S, Vessby B, Kallner A, Sjoberg LB, Febbraio MA, Pedersen BK. Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 2006; 100:167987.
  • 12
    Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6:43542.
  • 13
    Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 2004; 32 (Pt 4):62932.
  • 14
    Segal BH, Wang XY, Dennis CG, Youn R, Repasky EA, Manjili MH, Subjeck JR. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today 2006; 11:53440.
  • 15
    Pack CD, Gierynska M, Rouse BT. An intranasal heat shock protein based vaccination strategy confers protection against mucosal challenge with herpes simplex virus. Hum Vaccin 2008; 4:3604.
  • 16
    Mukai T, Maeda Y, Tamura T, Matsuoka M, Tsukamoto Y, Makino M. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette–Guérin that secretes heat shock protein 70-major membrane protein-II fusion protein. J Immunol 2009; 183:65618.
  • 17
    Binder RJ. HSP receptors: the cases of identity and mistaken identity. Curr Opin Mol Ther 2009; 11:6271.
  • 18
    Hart JP, Gunn MD, Pizzo SV. A CD91-positive subset of CD11c+ blood dendritic cells: characterization of the APC that functions to enhance adaptive immune responses against CD91-targeted antigens. J Immunol 2004; 172:708.
  • 19
    Nilsson A, Vesterlund L, Oldenborg PA. Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids. Biochem Biophys Res Commun 2012; 417:13049.
  • 20
    Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC. Expression of α2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. J Neurosci Res 2000; 60:40111.
  • 21
    Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 2011; 25:37991.
  • 22
    Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002; 17:35362.
  • 23
    Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr Mol Med 2003; 3:37385.
  • 24
    Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood 2003; 102:26609.
  • 25
    Juarez E, Nuñez C, Sada E, Ellner JJ, Schwander SK, Torres M. Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 2010; 11:2.
  • 26
    Mahnke K, Becher E, Ricciardi-Castagnoli P, Luger TA, Schwarz T, Grabbe S. CD14 is expressed by subsets of murine dendritic cells and upregulated by lipopolysaccharide. Adv Exp Med Biol 1997; 417:14559.
  • 27
    Marchant A, Duchow J, Delville JP, Goldman M. Lipopolysaccharide induces up-regulation of CD14 molecule on monocytes in human whole blood. Eur J Immunol 1992; 22:16635.
  • 28
    McLellan AD, Sorg RV, Williams LA, Hart DN. Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway. Eur J Immunol 1996; 26:120410.
  • 29
    Suttles J, Stout RD. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin Immunol 2009; 21:25764.
  • 30
    Tan J, Town T, Paris D et al. . Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J Neuroimmunol 1999; 97:7785.
  • 31
    Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 2002; 40:195205.
  • 32
    Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 2003; 170:23029.
  • 33
    Gordon S. Macrophage-restricted molecules: role in differentiation and activation. Immunol Lett 1999; 65:58.
  • 34
    Sorce S, Myburgh R, Krause KH. The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 2011; 93:297311.
  • 35
    Granelli-Piperno A, Moser B, Pope M et al. Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med 1996; 184:24338.
  • 36
    Oppermann M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 2004; 16:120110.
  • 37
    Tamura Y, Osuga J, Adachi H et al. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. J Biol Chem 2004; 279:3093844.
  • 38
    Beauvillain C, Meloni F, Sirard JC et al. The scavenger receptors SRA-1 and SREC-I cooperate with TLR2 in the recognition of the hepatitis C virus non-structural protein 3 by dendritic cells. J Hepatol 2010; 52:64451.
  • 39
    Pockley AG, Fairburn B, Mirza S, Slack LK, Hopkinson K, Muthana M. A non-receptor-mediated mechanism for internalization of molecular chaperones. Methods 2007; 43:23844.
  • 40
    Colaco CA. Towards a Unified Theory of Immunity; DCs, stress proteins and antigen capture. Cell Mol Biol 1998; 6:88390.
  • 41
    Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 2010; 29:155264.
  • 42
    Tobian AA, Canaday DH, Boom WH, Harding CV. Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T-cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 2004; 172:527786.
  • 43
    Tobian AA, Canaday DH, Harding CV. Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T-cells. J Immunol 2004; 173:51307.
  • 44
    Callahan MK, Garg M, Srivastava PK. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation. Proc Natl Acad Sci USA 2008; 105:16627.
  • 45
    Floto RA, MacAry PA, Boname JM et al. Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 2006; 314:4548.
  • 46
    Thériault JR, Adachi H, Calderwood SK. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 2006; 177:860411.
  • 47
    Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T-cells. Nat Immunol 2005; 6:5939.
  • 48
    Bendz H, Ruhland SC, Pandya MJ et al. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem 2007; 282:31688702.
  • 49
    Murshid A, Gong J, Calderwood SK. Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 2010; 185:290317.
  • 50
    SenGupta D, Norris PJ, Suscovich TJ et al. Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 2004; 173:198793.
  • 51
    Bleifuss E, Bendz H, Sirch B et al. Differential capacity of chaperone-rich lysates in cross-presenting human endogenous and exogenous melanoma differentiation antigens. Int J Hyperthermia 2008; 24:62337.
  • 52
    Bolhassani A, Rafati S. Mini-chaperones Potential immuno-stimulators in vaccine design. Hum Vaccin Immunother 2013; 9:15361.
  • 53
    Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 1999; 162:13039.
  • 54
    Teter SA, Houry WA, Ang D et al. Polypeptide flux through bacterial HSP70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 1999; 97:75565.
  • 55
    Feng H, Zeng Y, Graner MW, Likhacheva A, Katsanis E. Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood 2003; 101:24552.
  • 56
    Zeng Y, Graner MW, Katsanis E. Chaperone-rich cell lysates, immune activation and tumor vaccination. Cancer Immunol Immunother 2006; 55:32938.
  • 57
    Kislin KL, Marron MT, Li G, Graner MW, Katsanis E. Chaperone-rich cell lysate embedded with BCR-ABL peptide demonstrates enhanced anti-tumor activity against a murine BCR-ABL positive leukemia. FASEB J 2007; 21:217384.
  • 58
    Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39:938.
  • 59
    Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava PK. Immune modulation with high dose of heat shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 2004; 16:61524.
  • 60
    Calderwood SK, Stevenson MA, Murshid A. Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis 2012; 2012:486069.
  • 61
    Lv LH, Wan YL, Lin Y et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012; 287:1587485.
  • 62
    Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269:15858.
  • 63
    Todryk SM, Melcher AA, Dalgleish AG, Vile RG. Heat shock proteins refine the danger theory. Immunology 2000; 99:3347.
  • 64
    Aguilera R, Saffie C, Tittarelli A et al. Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clin Cancer Res 2011; 17:247483.
  • 65
    Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 2007; 26:21526.
  • 66
    Matsutake T, Sawamura T, Srivastava PK. High efficiency CD91- and LOX-1-mediated re-presentation of gp96-chaperoned peptides by MHC II molecules. Cancer Immun 2010; 2:7.
  • 67
    Testori A, Richards J, Whitman E et al. C-100-21 Study Group. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008; 26:95562.
  • 68
    Reitsma DJ, Combest AJ. Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Hum Vaccin Immunother 2012; 8:11525.
  • 69
    Colaco C. Autologous heat-shock protein vaccines. Hum Vaccin Immunother 2013; 9:2756.
  • 70
    Kropp LE, Garg M, Binder RJ. Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC class I in the endoplasmic reticulum. J Immunol 2010; 184:561927.
  • 71
    Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88:2328.
  • 72
    Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993; 178:13916.
  • 73
    Casey DG, Lysaght J, James T, Bateman A, Melcher AA, Todryk SM. Heat shock protein derived from a non-autologous tumour can be used as an anti-tumour vaccine. Immunology 2003; 110:10511.
  • 74
    Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, Subjeck JR. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. J Immunol 2010; 184:630919.
  • 75
    Pilla L, Patuzzo R, Rivoltini L et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol Immunother 2006; 8:95868.
  • 76
    Crane CA, Han SJ, Ahn BJ et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res 2013; 19:20514.
  • 77
    Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 1998; 4:5817.
  • 78
    Arnaiz B, Madrigal-Estebas L, Todryk S, James TC, Doherty DG, Bond U. A novel method to identify and characterise peptide mimotopes of heat shock protein 70-associated antigens. J Immune Based Ther Vaccines 2006; 4:2.
  • 79
    Todryk SM, Eaton J, Birchall L, Greenhalgh R, Soars D, Dalgleish AG, Melcher AA, Pandha HS. Heated tumour cells of autologous and allogeneic origin elicit anti-tumour immunity. Cancer Immunol Immunother 2004; 53:32330.
  • 80
    Gong J, Zhang Y, Durfee J et al. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J Immunol 2010; 184:48896.
  • 81
    Guo QY, Yuan M, Peng J, Cui XM, Song G, Sui X, Lu SB. Antitumor activity of mixed heat shock protein/peptide vaccine and cyclophosphamide plus interleukin-12 in mice sarcoma. J Exp Clin Cancer Res 2011; 30:24.
  • 82
    Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, Goldberg GL, Runowicz CD. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 2007; 106:45360.
  • 83
    Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 2011; 10:155368.
  • 84
    Heikema A, Agsteribbe E, Wilschut J, Huckriede A. Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett 1997; 57:6974.
  • 85
    Cuello-Carrión FD, Fanelli MA, Cayado-Gutiérrez N, Castro G, Ciocca DR. Isolation of heat shock protein complexes. Methods Mol Biol 2011; 787:26775.
  • 86
    Buriani G, Mancini C, Benvenuto E, Baschieri S. Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res 2011; 20:33144.
  • 87
    Buriani G, Mancini C, Benvenuto E, Baschieri S. Heat-shock protein 70 from plant biofactories of recombinant antigens activate multiepitope-targeted immune responses. Plant Biotechnol J 2012; 10:36371.
  • 88
    Menoret A. Purification of recombinant and endogenous HSP70s. Methods 2004; 32:712.
  • 89
    Colaco CA, Bailey CR, Keeble J, Walker KB. BCG (Bacille Calmette–Guérin) HSPCs (heat-shock protein–peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochem Soc Trans 2004; 32:6268.
  • 90
    Walker KB, Keeble J, Colaco C. Mycobacterial heat shock proteins as vaccines – a model of facilitated antigen presentation. Curr Mol Med 2007; 7:33950.
  • 91
    Bailey C, Bignell C, Clarke S et al. A novel vaccine approach for Neisseria meningitidis: heat shock protein-antigen complexes (HspC) demonstrate cross-serotype immunogenicity. Meningitis and Septicaemia in Children and Adults: November 2009. London : Organised by Meningitis Research Foundation.
  • 92
    Wald A, Koelle DM, Fife K et al. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011; 29:85209.
  • 93
    Cappello F, Conway de Macario E, Di Felice V, Zummo G, Macario AJ. Chlamydia trachomatis infection and anti-HSP60 immunity: the two sides of the coin. PLoS Pathog 2009; 5:e1000552.
  • 94
    Pannekoek Y, Schuurman IG, Dankert J, van Putten JP. Immunogenicity of the meningococcal stress protein MSP63 during natural infection. Clin Exp Immunol 1993; 93:37781.
  • 95
    Hedman AK, Li MS, Langford PR, Kroll JS. Transcriptional profiling of serogroup B Neisseria meningitidis growing in human blood: an approach to vaccine antigen discovery. PLoS ONE 2012; 7:e39718.
  • 96
    Pace JL, Rossi HA, Esposito VM, Frey SM, Tucker KD, Walker RI. Inactivated whole-cell bacterial vaccines: current status and novel strategies. Vaccine 1998; 16:156374.
  • 97
    Arakere G, Kessel M, Nguyen N, Frasch CE. Characterization of a stress protein from group B Neisseria meningitidis. J Bacteriol 1993; 175:36648.
  • 98
    Pilkington C, Costello AM, Rook GA, Stanford JL. Development of IgG responses to mycobacterial antigens. Arch Dis Child 1993; 69:6449.
  • 99
    Holst J, Martin D, Arnold R, Huergo CC, Oster P, O'Hallahan J, Rosenqvist E. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 2009; 27 (Suppl. 2):B312.
  • 100
    Rappuoli R, Mandl CW, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol 2011; 11:86572.