SEARCH

SEARCH BY CITATION

References

  • 1
    Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 1986; 136:44806.
  • 2
    Lanier LL, Testi R, Bindl J, Phillips JH. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 1989; 169:22338.
  • 3
    Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 1994; 153:168796.
  • 4
    Pilla L, Squarcina P, Coppa J et al. Natural killer and NK-Like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res 2005; 65:39429.
  • 5
    Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, Weissman IL, Negrin RS. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 1993; 21:16739.
  • 6
    Pievani A, Borleri G, Pende D, Moretta L, Rambaldi A, Golay J, Introna M. Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 2011; 118:330110.
  • 7
    Satoh M, Seki S, Hashimoto W, Ogasawara K, Kobayashi T, Kumagai K, Matsuno S, Takeda K. Cytotoxic γδ or αβ T cells with a natural killer cell marker, CD56, induced from human peripheral blood lymphocytes by a combination of IL-12 and IL-2. J Immunol 1996; 157:388692.
  • 8
    Franceschetti M, Pievani A, Borleri G, Vago L, Fleischhauer K, Golay J, Introna M. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp Hematol 2009; 37:61628.
  • 9
    O'Reilly V, Zeng SG, Bricard G et al. Distinct and overlapping effector functions of expanded human CD4+, CD8α+ and CD4-CD8α invariant natural killer T cells. PLoS One 2011; 6:e28648.
  • 10
    Karadimitris A, Patterson S, Spanoudakis E. Natural killer T cells and haemopoiesis. Br J Haematol 2006; 134:26372.
  • 11
    Takayama E, Koike Y, Ohkawa T et al. Functional and Vbeta repertoire characterization of human CD8+ T-cell subsets with natural killer cell markers, CD56+ CD57 T cells, CD56+ CD57+ T cells and CD56 CD57+ T cells. Immunology 2003; 108:2119.
  • 12
    Lemster BH, Michel JJ, Montag DT, Paat JJ, Studenski SA, Newman AB, Vallejo AN. Induction of CD56 and TCR-independent activation of T cells with aging. J Immunol 2008; 180:197990.
  • 13
    Watanabe H, Weerasinghe A, Miyaji C et al. Expansion of unconventional T cells with natural killer markers in malaria patients. Parasitol Int 2003; 52:6170.
  • 14
    Koreck A, Surányi A, Szöny BJ, Farkas A, Bata-Csörgö Z, Kemény M, Dobozy A. CD3+CD56+ NK T cells are significantly decreased in the peripheral blood of patients with psoriasis. Clin Exp Immunol 2002; 127:17682.
  • 15
    Green MR, Kennell AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR. Natural killer T cells in families of patients with systemic lupus erythematosus: their possible role in regulation of IgG production. Arthritis Rheum 2007; 56:30310.
  • 16
    Bergström I, Backteman K, Lundberg A, Ernerudh J, Jonasson L. Persistent accumulation of interferon-γ-producing CD8+CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis 2012; 224:51520.
  • 17
    Al Omar SY, Marshall E, Middleton D, Christmas SE. Increased numbers but functional defects of CD56+CD3+ cells in lung cancer. Int Immunol 2012; 24:40915.
  • 18
    Weng PJ, Ying H, Hong LZ, Zhou WH, Hu YR, Xu CH. An analysis of CD3+CD56+ lymphocytes and their subsets in the peripheral blood of patients with chronic hepatitis B. Zhonghua Gan Zang Bing Za Zhi 2008; 16:6546.
  • 19
    Srivastava R, Aggarwal R, Bhagat MR, Chowdhury A, Naik S. Alterations in natural killer cells and natural killer T cells during acute viral hepatitis E. J Viral Hepat 2008; 15:9106.
  • 20
    Fu GF, Chen X, Hu HY et al. Emergence of peripheral CD3+CD56+ cytokine-induced killer cell in HIV-1-infected Chinese children. Int Immunol 2012; 24:197206.
  • 21
    Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 2010; 20:20213.
  • 22
    Boeckh M, Geballe AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 2011; 121:167380.
  • 23
    Moss P, Khan N. CD8+ T-cell immunity to cytomegalovirus. Hum Immunol 2004; 65:45664.
  • 24
    Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989; 320:17315.
  • 25
    Pawelec G, Derhovanessian E. Role of CMV in immune senescence. Virus Res 2011; 157:1759.
  • 26
    Labalette M, Salez F, Pruvot FR, Noel C, Dessaint JP. CD8 lymphocytosis in primary cytomegalovirus (CMV) infection of allograft recipients: expansion of an uncommon CD8+ CD57 subset and its progressive replacement by CD8+ CD57+ T cells. Clin Exp Immunol 1994; 95:46571.
  • 27
    van den Berg AP, van Son WJ, Janssen RA et al. Recovery from cytomegalovirus infection is associated with activation of peripheral blood lymphocytes. J Infect Dis 1992; 166:122835.
  • 28
    Looney RJ, Falsey A, Campbell D et al. Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol 1999; 90:2139.
  • 29
    Faber C, Singh A, Krüger Falk M, Juel HB, Sørensen TL, Nissen MH. Age-related macular degeneration is associated with increased proportion of CD56+ T cells in peripheral blood. Ophthalmology 2013; 120:23106.
  • 30
    Mazzarino P, Pietra G, Vacca P, Falco M, Colau D, Coulie P, Moretta L, Mingari MC. Identification of effector-memory CMV-specific T lymphocytes that kill CMV-infected target cells in an HLA-E-restricted fashion. Eur J Immunol 2005; 35:32407.
  • 31
    Suni MA, Picker LJ, Maino VC. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 1998; 212:8998.
  • 32
    Tarazona R, DelaRosa O, Alonso C, Ostos B, Espejo J, Peña J, Solana R. Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev 2000; 121:7788.
  • 33
    Derhovanessian E, Maier AB, Hähnel K, Beck R, de Craen AJ, Slagboom EP, Westendorp RG, Pawelec G. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol 2011; 92:274656.
  • 34
    Cosmi L, De Palma R, Santarlasci V et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008; 205:190316.
  • 35
    Dusseaux M, Martin E, Serriari N et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17secreting T cells. Blood 2011; 117:12509.
  • 36
    Monsiváis-Urenda A, Noyola-Cherpitel D, Hernández-Salinas A, García-Sepúlveda C, Romo N, Baranda L, López-Botet M, González-Amaro R. Influence of human cytomegalovirus infection on the NK cell receptor repertoire in children. Eur J Immunol 2010; 40:141827.
  • 37
    Northfield JW, Kasprowicz V, Lucas M et al. CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology 2008; 47:396406.
  • 38
    Paiardini M, Cervasi B, Albrecht H et al. Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals. J Immunol 2005; 174:29009.
  • 39
    Hu D, Weiner HL, Ritz J. Identification of Cytolytic CD161CD56+ Regulatory CD8 T Cells in Human Peripheral Blood. PLoS One 2013; 8:e59545.
  • 40
    Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 2009; 155:42332.
  • 41
    Kuparinen T, Marttila S, Jylhävä J, Tserel L, Peterson P, Jylhä M, Hervonen A, Hurme M. Cytomegalovirus (CMV)-dependent and -independent changes in the aging of the human immune system: a transcriptomic analysis. Exp Gerontol 2003; 48:30512.
  • 42
    Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP. Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 2005; 174:608894.
  • 43
    Grundy JE, Downes KL. Up-regulation of LFA-3 and ICAM-1 on the surface of fibroblasts infected with cytomegalovirus. Immunology 1993; 78:40512.
  • 44
    Lopez-Vergès S, Milush JM, Schwartz BS et al. Expansion of a unique CD57⁺NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A 2011; 108:1472532.
  • 45
    Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004; 104:366471.
  • 46
    Romo N, Fitó M, Gumá M et al. Association of atherosclerosis with expression of the LILRB1 receptor by human NK and T-cells supports the infectious burden hypothesis. Arterioscler Thromb Vasc Biol 2011; 31:231421.
  • 47
    Tomasec P, Braud VM, Rickards C et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 2000; 287:10313.
  • 48
    Gumá M, Budt M, Sáez A, Brckalo T, Hengel H, Angulo A, López-Botet M. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 2006; 107:362431.
  • 49
    van Stijn A, Rowshani AT, Yong SL, Baas F, Roosnek E, ten Berge IJ, van Lier RA. Human cytomegalovirus infection induces a rapid and sustained change in the expression of NK cell receptors on CD8+ T cells. J Immunol 2008; 180:455060.
  • 50
    Doherty DG, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, Hegarty JE, O'Farrelly C. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 1999; 163:231421.
  • 51
    Barnaba V, Franco A, Paroli M et al. Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with Hepatitis B virus. J Immunol 1994; 152:307487.
  • 52
    Suni MA, Ghanekar SA, Houck DW, Maecker HT, Wormsley SB, Picker LJ, Moss RB, Maino VC. CD4+CD8dim T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur J Immunol 2001; 31:251220.
  • 53
    Muñoz-Cobo B, Solano C, Benet I et al. Functional profile of cytomegalovirus (CMV)-specific CD8+ T cells and kinetics of NKG2C+ NK cells associated with the resolution of CMV DNAemia in allogeneic stem cell transplant recipients. J Med Virol 2012; 84:25967.
  • 54
    Pittet MJ, Speiser DE, Valmori D, Cerottini JC, Romero P. Cutting edge: cytolytic effector function in human circulating CD8 T cells closely correlates with CD56 surface expression. J Immunol 2000; 164:114852.
  • 55
    Santin AD, Hermonat PL, Ravaggi A et al. Expression of CD56 by human papillomavirus E7-specific CD8+ cytotoxic T lymphocytes correlates with increased intracellular perforin expression and enhanced cytotoxicity against HLA-A2-matched cervical tumor cells. Clin Cancer Res 2001; 7:804s10s.
  • 56
    Hou W, Ye L, Ho WZ. CD56+ T cells inhibit HIV-1 infection of macrophages. J Leukoc Biol 2012; 92:34351.
  • 57
    Doskali M, Tanaka Y, Ohira M, Ishiyama K, Tashiro H, Chayama K, Ohdan H. Possibility of adoptive immunotherapy with peripheral blood-derived CD3⁻CD56+ and CD3+CD56+ cells for inducing antihepatocellular carcinoma and antihepatitis C virus activity. J Immunother 2011; 34:12938.
  • 58
    Sooryanarain H, Ayachit V, Gore M. Activated CD56+ lymphocytes (NK+NKT) mediate immunomodulatory and anti-viral effects during Japanese encephalitis virus infection of dendritic cells in vitro. Virology 2012; 432:25060.
  • 59
    Ahn JK, Chung H, Lee DS, Yu YS, Yu HG. CD8brightCD56+ T cells are cytotoxic effectors in patients with active Behçet's uveitis. J Immunol 2005; 175:613342.
  • 60
    Wang Y, Bai J, Li F et al. Characteristics of expanded CD4+CD28null T cells in patients with chronic hepatitis B. Immunol Invest 2009; 38:43446.
  • 61
    McAlpine SM, Issekutz TB, Marshall JS. Virus stimulation of human mast cells results in the recruitment of CD56⁺ T cells by a mechanism dependent on CCR5 ligands. FASEB J 2012; 26:12809.
  • 62
    Brzezinska A. Does in vitro replicative senescence of human CD8+ cells reflect the phenotypic changes observed during in vivo ageing? Acta Biochim Pol 2005; 52:9315.
  • 63
    Griffiths SJ, Riddell NE, Masters J et al. Age-associated increase of low-avidity cytomegalovirus-specific CD8+ T cells that re-express CD45RA. J Immunol 2013; 190:536372.
  • 64
    Vergelli M, Le H, van Noort JM, Dhib-Jalbut S, McFarland H, Martin R. A novel population of CD4+CD56+ myelin-reactive T cells lyses target cells expressing CD56/neural cell adhesion molecule. J Immunol 1996; 157:67988.
  • 65
    Kos FJ, Chin CS. Costimulation of T cell receptor-triggered IL-2 production by Jurkat T cells via fibroblast growth factor receptor 1 upon its engagement by CD56. Immunol Cell Biol 2002; 80:3649.
  • 66
    Chan A, Hong DL, Atzberger A et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 2007; 179:8994.
  • 67
    Coutts JC, Gallagher JT. Receptors for fibroblast growth factors. Immunol Cell Biol 1995; 73:5849.
  • 68
    Adler B, Sinzger C. Endothelial cells in human cytomegalovirus infection: one host cell out of many or a crucial target for virus spread? Thromb Haemost 2009; 102:105763.