SEARCH

SEARCH BY CITATION

References

  • 1
    Bloch I, Quintana F, Gerber D, Cohen T, Cohen I, Shai Y. T-cell inactivation and immunosuppressive activity induced by HIV gp41 via novel interacting motif. FASEB J 2007; 21:393401.
  • 2
    Garg H, Blumenthal R. Role of HIV Gp41 mediated fusion/hemifusion in bystander apoptosis. Cell Mol Life Sci 2008; 65:313444.
  • 3
    Morozov V, Morozov A, Semaan M, Denner J. Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology 2012; 9:67.
  • 4
    Le Y, Jiang S, Hu J et al. N36, a synthetic N-terminal heptad repeat domain of the HIV-1 envelope protein gp41, is an activator of human phagocytes. Clin Immunol 2000; 96:23642.
  • 5
    de Paulis A, Florio G, Prevete N et al. HIV-1 envelope gp41 peptides promote migration of human Fc epsilon RI+ cells and inhibit IL-13 synthesis through interaction with formyl peptide receptors. J Immunol 2002; 169:455967.
  • 6
    Su S, Gao J, Gong W et al. T21/DP107, A synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors. J Immunol 1999; 162:592430.
  • 7
    Robinson W, Gorny M, Xu J, Mitchell W, Zolla-Pazner S. Two immunodominant domains of gp41 bind antibodies which enhance human immunodeficiency virus type 1 infection in vitro. J Virol 1991; 65:416976.
  • 8
    Burrer R, Haessig-Einius S, Aubertin A, Moog C. Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41. Virology 2005; 333:10213.
  • 9
    Chan D, Fass D, Berger J, Kim P. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89:26373.
  • 10
    Yang O. Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation. PLoS ONE 2009; 4:e7388.
  • 11
    Eisele E, Siliciano R. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012; 37:37788.
  • 12
    Chun T, Fauci A. HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. AIDS 2012; 26:12618.
  • 13
    Le Tortorec A, Satie A, Denis H et al. Human prostate supports more efficient replication of HIV-1 R5 than X4 strains ex vivo. Retrovirology 2008; 5:119.
  • 14
    Smith D, Kingery J, Wong J, Ignacio C, Richman D, Little S. The prostate as a reservoir for HIV-1. AIDS 2004; 18:16002.
  • 15
    Lawless MK, Barney S, Guthrie KI, Bucy TB, Petteway SR Jr, Merutka G. HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry 1996; 35:13697708.
  • 16
    Millius A, Weiner O. Chemotaxis in neutrophil-like HL-60 cells. Methods Mol Biol 2009; 571:16777.
  • 17
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med 1979; 149:96974.
  • 18
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) Method. Methods 2001; 25:4028.
  • 19
    Pryde J. Partitioning of proteins in Triton X-114. Methods Mol Biol 1998; 88:2333.
  • 20
    Martellini JA, Cole AL, Venkataraman N et al. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J 2009; 23:360918.
  • 21
    Chen LM, Skinner ML, Kauffman SW et al. Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 2001; 276:2143442.
  • 22
    Martellini J, Cole A, Svoboda P et al. HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma. PLoS ONE 2011; 6:e16285.
  • 23
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:27319.
  • 24
    Boulay F, Tardif M, Brouchon L, Vignais P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry 1990; 29:1112333.
  • 25
    Murphy P, Ozçelik T, Kenney R, Tiffany H, McDermott D, Francke U. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem 1992; 267:763743.
  • 26
    Le Y, Gong W, Li B et al. Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol 1999; 163:677784.
  • 27
    Beliveau F, Desilets A, Leduc R. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J 2009; 276:221326.
  • 28
    Kuiken C, Foley B, Leitner T et al. , editors. HIV Sequence Compendium. Los Alamos, NM: Los Alamos National Laboratory, Theoretical Biology and Biophysics Group, 2012.
  • 29
    De Y, Chen Q, Schmidt AP et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192:106974.
  • 30
    Le Y, Yang Y, Cui Y et al. Receptors for chemotactic formyl peptides as pharmacological targets. Int Immunopharmacol 2002; 2:113.
  • 31
    Nielsen C, Pedersen C, Lundgren JD, Gerstoft J. Biological properties of HIV isolates in primary HIV infection: consequences for the subsequent course of infection. AIDS 1993; 7:103540.
  • 32
    Nedellec R, Coetzer M, Shimizu N et al. Virus entry via the alternative coreceptors CCR3 and FPRL1 differs by human immunodeficiency virus type 1 subtype. J Virol 2009; 83:835363.
  • 33
    Shimizu N, Tanaka A, Mori T et al. A formylpeptide receptor, FPRL1, acts as an efficient coreceptor for primary isolates of human immunodeficiency virus. Retrovirology 2008; 5:52.
  • 34
    Shimizu N, Tanaka A, Oue A et al. Broad usage spectrum of G protein-coupled receptors as coreceptors by primary isolates of HIV. AIDS 2009; 27:7619.
  • 35
    Moore JP, McKeating JA, Weiss RA, Sattentau QJ. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 1990; 250:113942.
  • 36
    Crooks ET, Tong T, Osawa K, Binley JM. Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J Virol 2011; 85:582539.
  • 37
    Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011; 1:a006841.