• 1
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989;86:1002410028.
  • 2
    Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993;90:720724.
  • 3
    Singh H, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 2008;68:29612971.
  • 4
    Singh H, et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011;71:35163527.
  • 5
    Serrano LM, et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 2006;107:26432652.
  • 6
    Kelly SS, et al. Adoptive immunotherapy after umbilical cord blood (UCB) transplantation: manufacturing and analysis of CD19-specific UCB-derived T-cells from scant numbers of UCB mononuclear cells. Biol Blood Marrow Transplant 2010;16:S182S183.
  • 7
    Hinrichs CS, et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 2009;106:1746917474.
  • 8
    Singh H, et al. Naive CD19-specific T cells exhibit superior proliferation and potential for adoptive immunotherapy. Biol Blood Marrow Transplant 2012;18:S311S311.
  • 9
    Deniger DC, et al. Bispecific T-cells expressing polyclonal repertoire of endogenous gammadelta T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol Ther 2013;21:638647.
  • 10
    Rischer M, Pscherer S, Duwe S, Vormoor J, Jurgens H, Rossig C. Human gammadelta T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br J Haematol 2004;126:583592.
  • 11
    Zhao Y, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009;183:55635574.
  • 12
    Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009;21:215223.
  • 13
    Wang J, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007;18:712725.
  • 14
    Yvon E, et al. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 2009;15:58525860.
  • 15
    Singh H, et al. Third generation chimeric antigen receptors containing CD137 or CD134 signaling endodomains augment CD19-specific T-cell effector function. Blood 2009;114:15711572.
  • 16
    Bestor TH. Gene silencing as a threat to the success of gene therapy. J Clin Invest 2000;105:409411.
  • 17
    Henikoff S. Conspiracy of silence among repeated transgenes. BioEssays 1998;20:532535.
  • 18
    Selker EU. Gene silencing: repeats that count. Cell 1999;97:157160.
  • 19
    Ivics Z, Izsvak Z, Minter A, Hackett PB. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci USA 1996;93:50085013.
  • 20
    Ivics Z, Hackett PB, Plasterk RH, Izsvak Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997;91:501510.
  • 21
    Izsvak Z, Ivics Z. Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 2004;9:147156.
  • 22
    Hackett PB, Ekker SC, Largaespada DA, McIvor RS. Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 2005;54:189232.
  • 23
    VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 2009;114:14611468.
  • 24
    Huls MH, et al. Clinical application of sleeping beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 2013;e50070.
  • 25
    Singh H, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. PLoS ONE 2013;8:e64138.
  • 26
    Hackett PB, Largaespada DA, Cooper LJ. A transposon and transposase system for human application. Mol Ther 2010;18:674683.
  • 27
    Izsvak Z, Hackett PB, Cooper LJ, Ivics Z. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. BioEssays 2010;32:756767.
  • 28
    Hackett PB Jr., et al. Efficacy and safety of Sleeping Beauty transposon-mediated gene transfer in preclinical animal studies. Curr Gene Ther 2011;11:341349.
  • 29
    Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res 2013;161:265283.
  • 30
    Walisko O, et al. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 2008;16:359369.
  • 31
    Schreifels J, et al. Autoregulation of transposition of Sleeping Beauty transposons by ubiquitous N-terminal, dominant negative peptides. Mol Ther 2007;15:S128S129.
  • 32
    Aronovich EL, McIvor RS, Hackett PB. The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 2011;20:R14R20.
  • 33
    Manuri PV, et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther 2010;21:427437.
  • 34
    Kowolik CM, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006;66:1099511004.
  • 35
    Kim DW, Uetsuki T, Kaziro Y, Yamaguchi N, Sugano S. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 1990;91:217223.
  • 36
    Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol 2002;318:12211235.
  • 37
    Geurts AM, et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 2003;8:108117.
  • 38
    Maiti SN, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 2013;36:112123.
  • 39
    Mates L, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 2009;41:753761.
  • 40
    Jin Z, et al. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 2011;18:849856.
  • 41
    Hackett PB. Integrating DNA vectors for gene therapy. Mol Ther 2007;15:1012.
  • 42
    Nakazawa Y, et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther 2011;19:21332143.
  • 43
    Bhatnagar P, et al. Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper-64. Integr Biol 2013;5:231238.
  • 44
    Hurton LV, et al. IL-7 as a membrane-bound molecule for the costimulation of tumor-specific T cells. Blood 2009;114:11831183.
  • 45
    Hurton LV, et al. Tethered IL-15 mutein on CD19-specific T cells sustains persistence when tumor antigen is low and can treat minimal residual disease. Mol Ther 2013;21:S237S237.
  • 46
    Peng PD, et al. Efficient nonviral Sleeping Beauty transposon-based TCR gene transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity. Gene Ther 2009;16:10421049.
  • 47
    Marh J, et al. Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis. Proc Natl Acad Sci USA 2012;109:1918419189.
  • 48
    Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975;45:321334.
  • 49
    Nemunaitis J, et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 2006;13:555562.
  • 50
    Smith BD, et al. K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin Cancer Res 2010;16:338347.
  • 51
    Maus MV, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 2002;20:143148.
  • 52
    Le Bouteiller P, et al. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci USA 2002;99:1696316968.
  • 53
    Hirano N, et al. Expression of costimulatory molecules in human leukemias. Leukemia 1996;10:11681176.
  • 54
    Papadimitriou L, Morianos I, Michailidou V, Dionyssopoulou E, Vassiliadis S, Athanassakis I. Characterization of intracellular HLA-DR, DM and DO profile in K562 and HL-60 leukemic cells. Mol Immunol 2008;45:39653973.
  • 55
    Numbenjapon T, et al. Characterization of an artificial antigen-presenting cell to propagate cytolytic CD19-specific T cells. Leukemia 2006;20:18891892.
  • 56
    Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8(+) T cells. Exp Hematol 2007;35:10831090.
  • 57
    Suhoski MM, et al. Engineering artificial antigen-presenting cells to express a diverse array of costimulatory molecules. Mol Ther 2007;15:981988.
  • 58
    Zhang H, et al. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J Immunol 2007;179:49104918.
  • 59
    Zola H, MacArdle P, Bradford T, Weedon H, Yasui H, Kurosawa Y. Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol Cell Biol 1991;69:411422.
  • 60
    Nicholson IC, et al. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol Immunol 1997;34:11571165.
  • 61
    Jena B, et al. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLoS ONE 2013;8:e57838.
  • 62
    Kalos M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3:95ra73.
  • 63
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725733.
  • 64
    Singh H, et al. PET imaging of T cells derived from umbilical cord blood. Leukemia 2009;23:620622.
  • 65
    Varadarajan N, et al. A high-throughput single-cell analysis of human CD8(+) T cell functions reveals discordance for cytokine secretion and cytolysis. J Clin Invest 2011;121:43224331.
  • 66
    Singh H, Liadi I, Romain G, Varadarajan N, Cooper LJN. Single-cell imaging reveals that subsets of T cells expressing a CD19-specific chimeric antigen receptor differ in effector function. Mol Ther 2013;21:S151S151.
  • 67
    Liadi I, Roszik J, Romain G, Cooper LJ, Varadarajan N. Quantitative high-throughput single-cell cytotoxicity assay for T cells. J Vis Exp 2013;e50058.
  • 68
    Davies JK, et al. Combining CD19 redirection and alloanergization to generate tumor-specific human T cells for allogeneic cell therapy of B-cell malignancies. Cancer Res 2010;70:39153924.
  • 69
    Torikai H, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012;119:56975705.
  • 70
    Torikai H, et al. Towards eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 2013;122:13411349.
  • 71
    Zhang M, et al. A new approach to simultaneously quantify both TCR alpha- and beta-chain diversity after adoptive immunotherapy. Clin Cancer Res 2012;18:47334742.