SEARCH

SEARCH BY CITATION

References

  • Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P.J. and Morawska, L. (2003a) Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation, J. Aerosol Sci., 34, 301317.
  • Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P.J. and Morawska, L. (2003b) Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress, J. Aerosol Sci., 34, 17111727.
  • Agranovski, V., Ristovski, Z.D., Ayoko, G.A. and Morawska, L. (2004a) Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin, Aerosol Sci. Technol., 38, 354364.
  • Agranovski, V., Ristovski, Z., Blackall, P.J. and Morawska, L. (2004b) Size-selective assessment of airborne particles in swine confinement building with the UVAPS, Atmos. Environ., 38, 38933901.
  • Bartlett, K.H., Kennedy, S.M., Brauer, M., van Netten, C. and Dill, B. (2004) Evaluation and determinants of airborne bacterial concentrations in school classrooms, J. Occup. Environ. Hyg., 1, 639647.
  • Bliznakova, I., Borisova, E. and Avramov, L. (2007) Laser- and light-induced autofluorescence spectroscopy of human skin in dependence on excitation wavelengths, Acta Phys. Pol. A, 112, 11311136.
  • Bones, D.L., Henricksen, D.K., Mang, S.A., Gonsior, M., Bateman, A.P., Nguyen, T.B., Cooper, W.J. and Nizkorodov, S.A. (2010) Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales, J. Geophys. Res. Atmos., 115, D05203. doi:10.1029/2009jd012864.
  • Borrego, S., Guiamet, P., Gómez de Saravia, S., Batistini, P., Garcia, M., Lavin, P. and Perdomo, I. (2010) The quality of air at archives and the biodeterioration of photographs, Int. Biodeterior. Biodegradation, 64, 139145.
  • Brandl, H., von Däniken, A., Hitz, C. and Krebs, W. (2008) Short-term dynamic patterns of bioaerosol generation and displacement in an indoor environment, Aerobiologia, 24, 203209.
  • Brosseau, L.M., Vesley, D., Rice, N., Goodell, K., Nellis, M. and Hairston, P. (2000) Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector, Aerosol Sci. Technol., 32, 545558.
  • Burg, A.W., Rohovsky, M.W., Kensler, C.J. and Wogan, G.N. (1977) Current status of human safety and environmental aspects of fluorescent whitening agents used in detergents in the United States, Crit. Rev. Env. Contr., 7, 91120.
  • Caruana, D.J. (2011) Detection and analysis of airborne particles of biological origin: present and future, Analyst, 136, 46414652.
  • Castillo, J.A., Staton, S.J.R., Taylor, T.J., Herckes, P. and Hayes, M.A. (2012) Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique, Anal. Bioanal. Chem., 403, 1526.
  • Chen, Q. and Hildemann, L.M. (2009) The effects of human activities on exposure to particulate matter and bioaerosols in residential homes, Environ. Sci. Technol., 43, 46414646.
  • Clark, R.P. and Shirley, S.G. (1973) Identification of skin in airborne particulate matter, Nature, 246, 3940.
  • Després, V.R., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U. and Jaenicke, R. (2012) Primary biological aerosol particles in the atmosphere: a review, Tellus B, 64, 15598.
  • Ege, M.J., Mayer, M., Normand, A.C., Genuneit, J., Cookson, W.O.C.M., Braun-Farhländer, C., Heederik, D., Piarroux, R. and von Mutius, E. (2011) Exposure to environmental microorganisms and childhood asthma, N. Engl. J. Med., 364, 701709.
  • Eng, J., Lynch, R.M. and Balaban, R.S. (1989) Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes, Biophys. J., 55, 621630.
  • Fierer, N., Lauber, C.L., Zhou, N., McDonald, D., Costello, E.K. and Knight, R. (2010) Forensic identification using skin bacterial communities, PNAS, 107, 64776481.
  • Fox, A., Harley, W., Feigley, C., Salzberg, D., Sebastian, A. and Larsson, L. (2003) Increased levels of bacterial markers and CO2 in occupied school rooms, J. Environ. Monit., 5, 246252.
  • Fox, A., Harley, W., Feigley, C., Salzberg, D., Toole, C., Sebastian, A. and Larsson, L. (2005) Large particles are responsible for elevated bacterial marker levels in school air upon occupation, J. Environ. Monit., 7, 450456.
  • Fox, K., Castanha, E., Fox, A., Feigley, C. and Salzberg, D. (2008) Human K10 epithelial keratin is the most abundant protein in airborne dust of both occupied and unoccupied school rooms, J. Environ. Monit., 10, 5559.
  • Gabey, A.M., Stanley, W.R., Gallagher, M.W. and Kaye, P.H. (2011) The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations, Atmos. Chem. Phys., 11, 54915504.
  • Hairston, P.P., Ho, J. and Quant, F.R. (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, J. Aerosol Sci., 28, 471482.
  • Harrison, D.E.F. and Chance, B. (1970) Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms, Appl. Microbiol., 19, 446450.
  • Healy, D.A., O'Connor, D.J., Burke, A.M. and Sodeau, J.R. (2012) A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material, Atmos. Environ., 60, 534543.
  • Hodgson, A.T., Ming, K.Y. and Singer, B.C. (2005) Quantifying object and material surface areas in residences. Report LBNL-56786, Lawrence Berkeley National Laboratory, Berkeley, CA. http://www.escholarship.org/uc/item/01b1h6sk.
  • Hospodsky, D., Qian, J., Nazaroff, W.W., Yamamoto, N., Bibby, K., Rismani-Yazdi, H. and Peccia, J. (2012) Human occupancy as a source of indoor airborne bacteria, PLoS One, 7, e34867.
  • Huffman, J.A., Treutlein, B. and Pöschl, U. (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe, Atmos. Chem. Phys., 10, 32153233.
  • Huffman, J.A., Sinha, B., Garland, R.M., Snee-Pollmann, A., Gunthe, S.S., Artaxo, P., Martin, S.T., Andreae, M.O. and Pöschl, U. (2012) Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08, Atmos. Chem. Phys., 12, 1199712019.
  • Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R.H., Robinson, N.H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V.R., Garcia, E., Gochis, D.J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D.A., Andreae, M.O., Jimenez, J.L., Gallagher, M., Kreidenweis, S.M., Bertram, A.K. and Pöschl, U. (2013) High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 61516164.
  • Jung, J.H., Park, S.Y., Lee, J.E., Lee, B.U. and Bae, G.N. (2012) Distinguishing biotic and abiotic particles using an ultraviolet aerodynamic particle sizer for real-time detection of bacterial bioaerosols, Environ. Eng. Sci., 29, 866874.
  • Kaliszewski, M., Trafny, E.A., Lewandowski, R., Włodarski, M., Bombalska, A., Kopczyński, K., Antos-Bielska, M., Szpakowska, M., Młyńczak, J., Mularczyk-Oliwa, M. and Kwaśny, M. (2013) A new approach to UVAPS data analysis toward detection of biological aerosol, J. Aerosol Sci., 58, 148157.
  • Kanaani, H., Hargreaves, M., Smith, J., Ristovski, Z., Agranovski, V. and Morawska, L. (2008) Performance of UVAPS with respect to detection of airborne fungi, J. Aerosol Sci., 39, 175189.
  • Leaver, I.H. and Milligan, B. (1984) Fluorescent whitening agents – a survey (1974-82), Dyes Pigm., 5, 109144.
  • Lee, H.J., Laskin, A., Laskin, J. and Nizkorodov, S. (2013) Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols, Environ. Sci. Technol., 47, 57635770.
  • Lehtonen, M., Reponen, T. and Nevalainen, A. (1993) Everyday activities and variation of fungal spore concentrations in indoor air, Int. Biodeterior. Biodegradation, 31, 2539.
  • Li, J.K., Asali, E.C., Humphrey, A.E. and Horvath, J.J. (1991) Monitoring cell concentration and activity by multiple excitation flourometry, Biotechnol. Prog., 7, 2127.
  • Luoma, M. and Batterman, S.A. (2001) Characterization of particulate emissions from occupant activities in offices, Indoor Air, 11, 3548.
  • Majumdar, D. and William, S.P.M.P. (2009) Chalk dustfall during classroom teaching: particle size distribution and morphological characteristics, Environ. Monit. Assess., 148, 343351.
  • McKernan, L.T., Wallingford, K.M., Hein, M.J., Burge, H., Rogers, C.A. and Herrick, R. (2008) Monitoring microbial populations on wide-body commercial passenger aircraft, Ann. Occup. Hyg., 52, 139149.
  • Meadow, J.F., Altrichter, A.E., Kembel, S.W., Kline, J., Mhuireach, G., Moriyama, M., Northcutt, D., O'Connor, T.K., Womack, A.M., Brown, G.Z., Green, J.L. and Bohannan, B.J.M. (2014) Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source, Indoor Air, 24, 4148.
  • Mendell, M.J., Mirer, A.G., Cheung, K., Tong, M. and Douwes, J. (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence, Environ. Health Perspect., 119, 748756.
  • Mitchell, C.S., Zhang, J., Sigsgaard, T., Jantunen, M., Lioy, P.J., Samson, R. and Karol, M.H. (2007) Current state of the science: health effects and indoor environmental quality, Environ. Health Perspect., 115, 958964.
  • Pan, Y.L., Pinnick, R.G., Hill, S.C., Rosen, J.M. and Chang, R.K. (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico, J. Geophys. Res., 112, D24S19. doi: 10.1029/2007JD008741.
  • Pöhlker, C., Huffman, J.A. and Pöschl, U. (2012) Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 3771.
  • Pöhlker, C., Huffman, J.A., Förster, J.D. and Pöschl, U. (2013) Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen, Atmos. Meas. Tech., 6, 33693392.
  • Portnoy, J.M., Barnes, C.S. and Kennedy, K. (2004) Sampling for indoor fungi, J. Allergy. Clin. Immunol., 113, 189198.
  • Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W.W. and Peccia, J. (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom, Indoor Air, 22, 339351.
  • Riley, W.J., McKone, T.E., Lai, A.C.K. and Nazaroff, W.W. (2002) Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms, Environ. Sci. Technol., 36, 200207.
  • Rintala, H., Pitkäranta, M., Toivola, M., Paulin, L. and Nevalainen, A. (2008) Diversity and seasonal dynamics of bacterial community in indoor environment, BMC Microbiol., 8, 56.
  • Saari, S.E., Putkiranta, M.J. and Keskinen, J. (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences, Atmos. Environ., 71, 202209.
  • Scheepers, P.T.J., Cremers, R., van Hout, S.P.R. and Anzion, R.B.M. (2012) Influence of a portable air treatment unit on health-related quality indicators of indoor air in a classroom, J. Environ. Monit., 14, 429439.
  • Scheff, P.A., Paulius, V.K., Curtis, L. and Conroy, L.M. (2000) Indoor air quality in a middle school, part II: development of emission factors for particulate matter and bioaerosols, Appl. Occup. Environ. Hyg., 15, 835842.
  • Schumacher, C.J., Pöhlker, C., Aalto, P., Hiltunen, V., Petäjä, T., Kulmala, M., Pöschl, U. and Huffman, J.A. (2013) Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado, Atmos. Chem. Phys., 13, 1198712001.
  • Stanley, W.R., Kaye, P.H., Foot, V.E., Barrington, S.J., Gallagher, M. and Gabey, A. (2011) Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer, Atmos. Sci. Lett., 12, 195199.
  • Täubel, M., Rintala, H., Pitkäranta, M., Paulin, L., Laitinen, S., Pekkanen, J., Hyvärinen, A. and Nevalainen, A. (2009) The occupant as a source of house dust bacteria, J. Allergy. Clin. Immunol., 124, 834840.
  • Thatcher, T.L., Lai, A.C.K., Moreno-Jackson, R., Sextro, R.G. and Nazaroff, W.W. (2002) Effects of room furnishings and air speed on particle deposition rates indoors, Atmos. Environ., 36, 18111819.
  • Toivola, M., Alm, S., Reponen, T., Kolari, S. and Nevalainen, A. (2002) Personal exposures and microenvironmental concentrations of particles and bioaerosols, J. Environ. Monit., 5, 166174.
  • Toprak, E. and Schnaiter, M. (2013) Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study, Atmos. Chem. Phys., 13, 225243.
  • Weschler, C.J., Langer, S., Fischer, A., Bekö, G., Toftum, J. and Clausen, G. (2011) Squalene and cholesterol in dust from Danish homes and daycare centers, Environ. Sci. Technol., 45, 38723879.
  • You, R., Cui, W., Chen, C. and Zhao, B. (2013) Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber, Aerosol Air Qual. Res., 13, 911921.