SEARCH

SEARCH BY CITATION

Keywords:

  • Infection control;
  • Personalized ventilation;
  • Healthcare setting;
  • Personalized exhaust;
  • Exhalation air;
  • Airborne transmission

Abstract

In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)–personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV–PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV–PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone.