SEARCH

SEARCH BY CITATION

Keywords:

  • Confidence distribution;
  • statistical inference;
  • fiducial distribution;
  • Bayesian method;
  • likelihood function;
  • estimation theory

Résumé

Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut-on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue.

Summary

In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a “distribution estimator”. The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool.

This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures.