SEARCH

SEARCH BY CITATION

References

  • Babu, G.J. & Singh, K. (1983). Inference on means using the bootstrap. Ann. Statist. , 11, 9991003.
  • Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics . London : Chapman & Hall.
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. , 53, 370418; 54, 296–325. Reprinted in Biometrika, 45 (1958), 293–315.
  • Bender, R., Berg, G. & Zeeb, H. (2005). Tutorial: Using confidence curves in medical research. Biom. J. , 47, 237247.
  • Berger, R.L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics , 24, 295300.
  • Bickel, D.R. (2006). Incorporation expert knowledge into frequentist inference by combining generalized confidence distributions. Available at: http://128.84.158.119/abs/math/0602377v1.
  • Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Amer. Statist. Assoc. , 56, 246249.
  • Bityukov, S., Krasnikov, N., Nadarajah, N. & Smirnova, V. (2010). Confidence distributions in statistical inference. In Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering , Eds. A. Mohammad-Djafari, J.-F. Bercher & P. Bessiere, pp. 446456. Melville , NY .
  • Bityukov, S.I., Krasnikov, N.V., Smirnova, V.V. & Taperechkina, V.A. (2007). The transform between the space of observed values and the space of possible values of the parameter. Proc. Sci. (ACAT) , 62, 19.
  • Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canad. J. Statist. , 28, 783798.
  • Blaker, H. & Spjøtvoll, E. (2000). Paradoxes and improvements in interval estimation. Amer. Statist. , 54, 242247.
  • Blyth, C.R. & Still, H. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. , 78, 108-116.
  • Casella, G. (1986). Refining binomial confidence intervals. Canad. J. Statist. , 14, 113129.
  • Clagget, B., Xie, M. & Tian, L. (2012). Nonparametric inference for meta analysis with fixed unknown, study-specific parameters. Harvard University Biostatistics Working Paper Series. Working Paper 154. Available at http://biostats.bepress.com/harvardbiostat/paper154/.
  • Coudin, E. & Dufour, J.M. (2004). Hodges-Lehmann sign-based estimators and generalized confidence distributions in linear median regressions with heterogeneous dependent errors. CIREQ/CIRANO, Department of Economics, McGill University, 49 pp. (revised 2010).
  • Cox, D.R. (1958). Some problems with statistical inference. Ann. Math. Stat ., 29, 357372.
  • Cox, D.R. (2006). Principles of Statistical Inference. London : Cambridge University Press.
  • Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics . London : Chapman & Hall.
  • Crow, E.L. (1956). Confidence intervals for a proportion. Biometrika , 43, 423435.
  • David, H.A. & Edwards, A.W.F. (2001). Annotated Readings in the History of Statistics . New York : Springer-Verlag.
  • Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. Internat. J. Approx. Reason. , 48, 365377.
  • DiCiccio, T. & Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika , 79, 23145.
  • Efron, B. (1986). Why isn’t everyone a Bayesian? Amer. Statist. , 40, 262266.
  • Efron, B. (1987). Better bootstrap confidence intervals and bootstrap approximations. J. Amer. Statist. Assoc. , 82, 171185.
  • Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika , 80, 326.
  • Efron, B. (1998). R.A.Fisher in the 21st century. Stat. Sci. , 13, 95122.
  • Efron, B. & Tibshirani, R.J. (1994). An Introduction to the Bootstrap. London : Chapman & Hall.
  • Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A , 222, 309368.
  • Fisher, R.A. (1930). Inverse probability. Proc. Cambridge Philos. Soc. , 26, 528535.
  • Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh : Oliver and Boyd.
  • Fisher, R.A. (1960). On some extensions of Bayesian inference proposed by Mr. Lindley. J. R. Stat. Soc. B, 22, 299301.
  • Fisher, R.A. (1973). Statistical Methods and Scientific Inference , 3rd ed. New York : Hafner Press.
  • Fraser, D.A.S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. , 86, 258265.
  • Fraser, D.A.S. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci. , 26, 299316.
  • Fraser, D.A.S. & Mcdunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. , 12, 183190.
  • Hall, P. (1992). On the removal of skewness by transformation. J. R. Stat. Soc. Ser. B, 54, 221228.
  • Hall, P. & Miller, H. (2010). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika , 97, 881892.
  • Hampel, F. (2006). The proper fiducial argument. Inf. Transf. Combin. , LNCS 4123, pp. 512 –526.
  • Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica , 19, 491544.
  • Johnson, R.A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Stat. , 38, 18991906.
  • Joseph, L., du Berger, R. & Belisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Stat. Med. , 16, 769781.
  • Kass, R. (2011). Statistical inference: The big picture. Statist. Sci. , 26, 19.
  • Kendall, M. & Stuart, A. (1974). The Advanced Theory of Statistics , 2, 3rd ed. London : Griffin.
  • Kim, D. & Lindsay, B.G. (2011). Using confidence distribution sampling to visualize confidence sets. Statist. Sinica , 21, 923948.
  • LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics , 1, 277330.
  • LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Plubl. Inst. Statist. Univ. Paris , 7, 1735.
  • Lehmann, E.L. (1991). Testing Statistical Hypotheses. New York : Springer-Verlag.
  • Littell, R.C. and Folks, J.L. (1973). Asymptotic optimality of Fisher’s method of combining independent tests. II. J. Amer. Statist. Assoc. , 68, 193194.
  • Lindley, D.V. (1958). Fiducial distribution and Bayes theorem. J. R. Stat. Soc. Ser. B, 20, 102107.
  • Liu, R.Y., Parelius, J. & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. , 27, 783858.
  • Mau, J. (1988). A statistical assessment of clinical equivalence. Stat. Med. , 7, 12671277.
  • Marden, J.I. (1991). Sensitive and sturdy p-values. Ann. Statist . 19, 918934.
  • Martin, R., Zhang, J. & Liu, C. (2010). Dempster-Shafer theory and statistical inference with weak beliefs. Statist. Sci. , 25, 7287.
  • Neyman, J. (1934). On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection. J. Roy. Statist. Soc. Ser. A , 97, 558625.
  • Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos.Trans. R. Soc. A., 237, 333380.
  • Normand, S.-L. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. , 18, 321359.
  • Parmar, M.K.B., Spiegelhalter, D.J, Freedman, L.S. & Chart Steering Committee (1994). The chart trials: Bayesian design and monitoring in practice. Stat. Med. , 13, 12971312.
  • Parzen, M., Wei, L.J. & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika , 81, 341350.
  • Rao, C.R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. New York : Wiley & Sons.
  • Reid, N. & Fraser, D.A.S. (2010). Mean likelihood and higher order approximations. Biometrika , 97, 159170.
  • Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska. Biometrics , 59, 974983.
  • Schweder, T. (2007). Confidence nets for curves. Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. World Scientific. 593609.
  • Schweder, T. & Hjort, N.L. (2002). Confidence and likelihood. Scand. J. Stat. , 29, 309332.
  • Schweder, T & Hjort, N.L (2003). Frequentist analogues of priors and posteriors. In Econometrics and the Philosophy of Economics, Ed. B.P. Stigum, pp. 285317. Princeton, New Jersey: Princeton University Press.
  • Schweder, T., Sadykova, D., Rugh, D. & Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. J. Agric. Biol. Environ. Stat. , 15, 119.
  • Singh, K. & Xie, M. (2011). Discussions on professor Fraserâs article on “Is Bayes posterior just quick and dirty confidence? Stat. Sci ., 26, 319321.
  • Singh, K. & Xie, M. (2012). CD-posterior — combining prior and data through confidence distributions. In Contemporary Developments in Bayesian Analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman. IMS Collection, Eds. D. Fourdrinier, E. Marchand & A.L. Rukhin, Vol. 8, pp. 200214. Baltimore : Mattson Publishing Services.
  • Singh, K., Xie, M. & Strawderman, W. (2001). Confidence distributions–concept, theory and applications. Technical Report, Dept. of Statistics, Rutgers University. Updated 2004.
  • Singh, K., Xie, M. & Strawderman, W.E. (2005). Combining information from independent sources through confidence distributions. Ann. Statist. 33, 159183.
  • Singh, K., Xie, M. & Strawderman, W.E. (2007). Confidence distribution (CD)-distribution estimator of a parameter. In Complex Datasets and Inverse Problems. IMS Lecture Notes-Monograph Series, 54, 132150.
  • Spiegelhalter, D.J., Freedman, L.S. & Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A , 157, 357416.
  • Sterne, T.H. (1954). Some remarks on confidence or fiducial limits. Biometrika , 41, 275278.
  • Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Stat. Med. , 27, 625650.
  • Tian, L., Cai, T., Pfeffer, M., Piankov, N., Cremieux, P. & Wei, L. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction. Biostatistics , 10, 275281.
  • Tian, L., Wang, R., Cai, T. & Wei, L.J. (2011). The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics , 67, 604610.
  • Wasserman, L. (2007). Why isn’t everyone a Bayesian? In The Science of Bradley Efron , Eds. C.N. Morris & R. Tibshirani, pp. 260261. New York : Springer.
  • Welch, B.L. & Peers, H.W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B , 25, 31829.
  • Wong, A.C.M. (1993). A note on inference for the mean parameter of the gamma distribution. Stat. Probab. Lett. , 17, 6166.
  • Wong, A.C.M. (1995). On approximate inference for the two-parameter gamma model. Stat. Papers , 36, 4959.
  • Xie, M., Liu, R.Y., Damaraju, C.V. & Olson, W.H. (2013). Incorporating external information in analyses of clinical trials with binary outcomes. Available at http://www.imstat.org/aoas/next_issue.html.
  • Xie, M., Singh, K. & Strawderman, W.E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. , 106, 320333.
  • Xie, M., Singh, K. & Zhang, C.-H. (2009). Confidence intervals for population ranks in the presence of ties or near ties. J. Amer. Statist. Assoc. , 104, 775788.
  • Yang, G., Shi, P. & Xie, M. (2012). gmeta : Meta-Analysis via a Unified Framework under Confidence Distribution (R package). Version 2. Available at http://stat.rutgers.edu/home/mxie/packages/gmetaRpackage/.
  • Zabell, S.L. (1992). R.A. Fisher and fiducial argument. Stat. Sci. , 7, 369387.