Get access

A Brief Survey of Modern Optimization for Statisticians


  • 1

    This paper is followed by discussions and a rejoinder.


Modern computational statistics is turning more and more to high-dimensional optimization to handle the deluge of big data. Once a model is formulated, its parameters can be estimated by optimization. Because model parsimony is important, models routinely include non-differentiable penalty terms such as the lasso. This sober reality complicates minimization and maximization. Our broad survey stresses a few important principles in algorithm design. Rather than view these principles in isolation, it is more productive to mix and match them. A few well-chosen examples illustrate this point. Algorithm derivation is also emphasized, and theory is downplayed, particularly the abstractions of the convex calculus. Thus, our survey should be useful and accessible to a broad audience.