• Abrams D.I., Goldman A.I., Launer C., Korvick J.A., Neaton J.D., Crane L.R., Grodesky M., Wakefield S., Muth K., Kornegay S., Cohn D.L., Harris A., Luskin-Hawk R., Markowitz N., Sampson J.H., Thompson M. & Deyton L. (1994). A comparative trial of didanosine or zalcitabine after treatment with zidovudine in patients with human immunodeficiency virus infection. N. Engl. J. of Med., 330, 657662.
  • Andersen P.K. & Gill R.D. (1982). Cox's regression model for counting processes: A large sample study. Ann. Statist, 10, 11001120.
  • Chen Y.Q., Wang M.-C. & Huang Y. (2004). Semiparametric regression analysis on longitudinal pattern of recurrent gap times. Biostatistics, 5, 277290.
  • Clayton D.G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141151.
  • Gelber R.D., Gelman R.S. & Goldhirsch A. (1989). A quality-of-life oriented endpoint for comparing therapies. Biometrics, 45, 781795.
  • Huang C.-Y. & Wang M.-C. (2005). Nonparametric estimation of the bivariate recurrence time distribution. Biometrics, 61, 392402.
  • Huang Y. & Louis T.A. (1998). Nonparametic estimation of the joint distribution of survival time and mark variable. Biometrika, 85, 785796.
  • Huang Y. & Chen Y.Q. (2003). Marginal regression of gaps between recurrent events. Lifetime Data Anal., 9, 293303.
  • Kaplan E.L. & Meier P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc., 53, 457481.
  • Lawless J.F. & Nadeau C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158168.
  • Lin D.Y., Sun W. & Ying Z. (1999). Nonparametric estimation of gap time distributions for serial events with censored data. Biometrika, 86, 59-70.
  • Lin D.Y., Wei L.J., Yang I. & Ying Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. J. R. Statist. Soc. Ser. B, 62, 711730.
  • Lin D.Y. & Ying Z. (2001). Nonparametric tests for the gap time distributions of serial events based on censored data. Biometrics, 57, 369375.
  • Pena E.A., Strawderman R.L. & Hollander M. (2001). Nonparametric estimation with recurrent event data. J. Amer. Statist. Assoc., 96, 12991315.
  • Pepe M.S. & Cai J. (1993). Some graphical displays and marginal regression analysis for recurrent failure times and time dependent covariates. J. Amer. Statist. Assoc., 88, 811820.
  • Prentice R.L., Williams B.J. & Peterson A.V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373379.
  • Schaubel D. & Cai J. (2004a). Non-parametric estimation of gap time survival functions for ordered multivariate failure time data. Statist. Med., 23, 18851900.
  • Schaubel D. & Cai J. (2004b). Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data. Biometrika, 91, 291303.
  • van der Lann M.J., Hubbard A.E. & Robins J.M. (2002). Locally efficient estimation of a multivariate survival function in longitudinal studies. J. Amer. Statist. Assoc., 97, 494507.
  • Visser M. (1996). Nonparametric estimation on the bivariate survival function with application to vertically transmitted AIDS. Biometrika, 83, 507518.
  • Wang M.-C. & Chang S.-H. (1999). Nonparametric estimation of a recurrent survival function. J. Amer. Statist. Assoc., 94, 146153.
  • Wang M.-C., Qin J. & Chiang C.-T. (2001). Analyzing recurrent event data with informative censoring. J. Amer. Statist. Assoc., 96, 10571065.
  • Wang W.-J. & Wells M.T. (1998). Nonparametric estimation of successive duration times under dependent censoring. Biometrika, 85, 561572.
  • Xue X. & Brookmeyer R. (1996). Bivariate frailty model for the analysis of multivariate survival time. Lifetime Data Anal., 96, 10571065.