• 1
    Smith GJ, Bahl J, Vijaykrishna D et al. Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci USA 2009; 106:1170911712.
  • 2
    Capua I, Cattoli G. One flu for one health. Emerg Infect Dis 2010; 16:719.
  • 3
    Kandeel A, Manoncourt S, Abd el Kareem E et al. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2006–2009. Emerg Infect Dis 2010; 16:11011107.
  • 4
    Kayali G, Webby RJ, Ducatez MF et al. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS ONE 2011; 6:e17730.
  • 5
    Munier S, Moisy D, Marc D, Naffakh N. Interspecies transmission, adaptation to humans and pathogenicity of animal influenza viruses. Pathol Biol 2010; 58:e59e68.
  • 6
    Belser JA, Maines TR, Tumpey TM, Katz JM. Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 2010; 12:e39. Review.
  • 7
    Morens DM, Taubenberger JK. Pandemic influenza: certain uncertainties. Rev Med Virol 2011; 21:262284.
  • 8
    Forrest HL, Webster RG. Perspectives on influenza evolution and the role of research. Anim Health Res Rev 2010; 11:318. Review.
  • 9
    Pepin KM, Lass S, Pulliam JR, Read AF, Lloyd-Smith JO. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 2010; 8:802813. Review.
  • 10
    Klenk HD, Garten W, Matrosovich M. Molecular mechanisms of interspecies transmission and pathogenicity of influenza viruses: lessons from the 2009 pandemic. BioEssays 2011; 33:180188.
  • 11
    Wright PF, Neumann G, Kawaoka Y, Knipe DM, Howley PM (eds). Fields Virology: Orthomyxoviruses, 5th edn. Vol 1, Chapter 48. Philadelphia, PA: Lippincott, Williams & Wilkins, 2007; 16931740.
  • 12
    Tong S, Li Y, Rivailler P et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 2012; 13:42694274.
  • 13
    Capua Ilaria, Alexander Dennis J. Avian Influenza and Newcastle Disease: A Field and Laboratory Guide. Milan, Italy: Springer-Verlag, 2009.
  • 14
    Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 2004; 283:121143.
  • 15
    Haye K, Burmakina S, Moran T, García-Sastre A, Fernandez-Sesma A. The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. J Virol 2009; 83:68496862.
  • 16
    McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA. PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 2010; 6:e1001014.
  • 17
    Jagger BW, Wise HM, Kash JC et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 2012; 13:199204.
  • 18
    Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983; 127:361373.
  • 19
    Pillai SP, Lee CW. Species and age related differences in the type and distribution of influenza virus receptors in different tissues of chickens, ducks and turkeys. Virol J 2010; 7:5.
  • 20
    Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 1993; 29:155165.
  • 21
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature 2006; 440:435436.
  • 22
    Shelton H, Ayora-Talavera G, Ren J et al. Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential. J Virol 2011; 85:18751880.
  • 23
    Nicholls JM, Bourne AJ, Chen H, Guan Y, Peiris JS. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir Res 2007; 8:73.
  • 24
    Kalthoff D, Globig A, Beer M. Highly pathogenic avian influenza as a zoonotic agent. Vet Microbiol 2010; 140:237245.
  • 25
    Piwpankaew Y, Monteerarat Y, Suptawiwat O, Puthavathana P, Uipresertkul M, Auewarakul P. Distribution of viral RNA, sialic acid receptor, and pathology in H5N1 avian influenza patients. APMIS 2010; 118:895902.
  • 26
    Ito T, Couceiro JN, Kelm S et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998; 72:73677373.
  • 27
    Bateman AC, Karamanska R, Busch MG, Dell A, Olsen CW, Haslam SM. Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAc{alpha}2-6 glycans. J Biol Chem 2010; 285:3401634026.
  • 28
    Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol J 2010; 7:38.
  • 29
    Nelli RK, Kuchipudi SV, White GA, Perez BB, Dunham SP, Chang KC. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 2010; 6:4.
  • 30
    Xu D, Newhouse EI, Amaro RE et al. Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J Mol Biol 2009; 387:465491.
  • 31
    Chandrasekaran A, Srinivasan A, Raman R et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 2008; 26:107113.
  • 32
    Thongratsakul S, Suzuki Y, Hiramatsu H et al. Avian and human influenza A virus receptors in trachea and lung of animals. Asian Pac J Allergy Immunol 2010; 28:294301.
  • 33
    Kuchipudi SV, Nelli R, White GA, Bain M, Chang KC, Dunham S. Differences in influenza virus receptors in chickens and ducks: implications for interspecies transmission. J Mol Genet Med 2009; 3:143151.
  • 34
    Yu JE, Yoon H, Lee HJ et al. Expression patterns of influenza virus receptors in the respiratory tracts of four species of poultry. J Vet Sci 2011; 12:713.
  • 35
    Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 1987; 56:365394. Review.
  • 36
    Yassine HM, Lee CW, Gourapura R, Saif YM. Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors. Anim Health Res Rev 2010; 11:5372. Review.
  • 37
    Glaser L, Stevens J, Zamarin D et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 2005; 79:1153311536.
  • 38
    Liu J, Stevens DJ, Haire LF et al. Structures of receptor complexes formed by hemagglutinins from the Asian influenza pandemic of 1957. Proc Natl Acad Sci USA 2009; 106:1717517180.
  • 39
    Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS. Evolving complexities of influenza virus and its receptors. Trends Microbiol 2008; 16:149157.
  • 40
    Suzuki Y, Ito T, Suzuki T et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 2000; 74:1182511831.
  • 41
    Sriwilaijaroen N, Kondo S, Yagi H et al. N-glycans from porcine trachea and lung: predominant NeuAcα2-6Gal could be a selective pressure for influenza variants in favor of human-type receptor. PLoS ONE 2011; 6:e16302.
  • 42
    Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R. Glycans as receptors for influenza pathogenesis. Glycoconj J 2010; 27:561570. Review.
  • 43
    Mehle A, Doudna JA. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA 2009; 106:2131221316.
  • 44
    Li OT, Chan MC, Leung CS et al. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS ONE 2009; 4:e5658.
  • 45
    Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7:440451. Review.
  • 46
    Foeglein A, Loucaides EM, Mura M, Wise HM, Barclay WS, Digard P. Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase. J Gen Virol 2011; 92:16501661.
  • 47
    Chen GW, Chang SC, Mok CK et al. Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis 2006; 12:13531360.
  • 48
    Finkelstein DB, Mukatira S, Mehta PK et al. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 2007; 81:1029210299.
  • 49
    Miotto O, Heiny A, Tan TW, August JT, Brusic V. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics 2008; 9:S18.
  • 50
    Chen H, Li Y, Li Z et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in Western China. J Virol 2006; 80:59765983.
  • 51
    Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 2009; 5:e1000252.
  • 52
    Moncorgé O, Mura M, Barclay WS. Evidence for avian and human host cell factors that affect the activity of influenza virus polymerase. J Virol 2010; 84:99789986.
  • 53
    Scull MA, Gillim-Ross L, Santos C et al. Avian influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways. PLoS Pathog 2009; 5:e1000424.
  • 54
    Herfst S, Chutinimitkul S, Ye J et al. Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol 2010; 84:37523758.
  • 55
    Jagger BW, Memoli MJ, Sheng ZM et al. The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio 2010; 1:19.
  • 56
    Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol 2010; 84:43954406.
  • 57
    Yamada S, Hatta M, Staker BL et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog 2010; 6:111.
  • 58
    Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 2005; 102:1859018595.
  • 59
    Gabriel G, Klingel K, Otte A et al. Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun 2011; 2:156.
  • 60
    Rott R. The pathogenic determinant of influenza virus. Vet Microbiol 1992; 33:303310.
  • 61
    Foucault ML, Moules V, Rosa-Calatrava M, Riteau B. Role for proteases and HLA-G in the pathogenicity of influenza A viruses. J Clin Virol 2011; 51:155159.
  • 62
    Stieneke-Grober A, Vey M, Angliker H et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMOB J 1992; 11:24072414.
  • 63
    Stech O, Veits J, Weber S et al. Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J Virol 2009; 83:58645868.
  • 64
    Munster VJ, Schrauwen EJ, de Wit E et al. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J Virol 2010; 84:79537960.
  • 65
    Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 2008; 105:43814386.
  • 66
    Malik PJS. Avian influenza viruses in humans. Rev Sci Tech Off Int Epizoot 2009; 28:161174.
  • 67
    Phung TT, Sugamata R, Uno K et al. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells. Microbiol Immunol 2011; 55:874884.
  • 68
    Varga ZT, Ramos I, Hai R et al. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog 2011; 7:116.
  • 69
    McAuley JL, Hornung F, Boyd KL et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2007; 2:240249.
  • 70
    Chen R, Holmes EC. Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 2006; 23:23362341.
  • 71
    Both GW, Sleigh MJ, Cox NJ, Kendal AP. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J Virol 1983; 48:5260.
  • 72
    Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 1993; 90:41714175.
  • 73
    Dos Reis M, Hay AJ, Goldstein RA. Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 ‘Spanish’ influenza pandemic virus. J Mol Evol 2009; 69:333345.
  • 74
    Jackson S, Van Hoeven N, Chen LM et al. Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J Virol 2009; 83:81318140.
  • 75
    Ayora-Talavera G, Shelton H, Scull MA et al. Mutations in H5N1 influenza virus hemagglutinin that confers binding to human tracheal airway epithelium. PLoS ONE 2009; 4:111.
  • 76
    Yea C, McCorrister S, Westmacott G, Petric M, Tellier R. Early detection of influenza A (H5) viruses with affinity for the human sialic acid receptor by MALDI-TOF mass spectrometry based mutation detection. J Virol Methods 2011; 172:7277.
  • 77
    Watanabe Y, Ibrahim MS, Ellakany HF et al. Acquisition of human-type receptor binding specificity by New H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 2011; 7:119.
  • 78
    Bateman AC, Busch MG, Karasin AI, Bovin N, Olsen CW. Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for alpha2, 6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. J Virol 2008; 82:82048209.
  • 79
    Tamuri AU, Dos Reis M, Hay AJ, Goldstein RA. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput Biol 2009; 5:e1000564.
  • 80
    Sorrell EM, Wan H, Araya Y, Song H, Perez DR. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc Natl Acad Sci USA 2009; 106:75657570.
  • 81
    Tambunan US, Ramdhan. Identification of sequence mutations affecting hemagglutinin specificity to sialic acid receptor in influenza A virus subtypes. Bioinformation 2010; 5:244249.
  • 82
    Fusaro A, Monne I, Salviato A et al. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol 2011; 85:84138421.
  • 83
    Subbarao K, Klimov A, Katz J et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 1998; 279:393396.
  • 84
    Taubenberger JK, Morens DM. Pandemic influenza-including a risk assessment of H5N1. Rev Sci Tech 2009; 28:187202.
  • 85
    Imai M, Watanabe T, Hatta M et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012; 486:420428.
  • 86
    Herfst S, Schrauwen EJA, Linster M et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012; 336:15341541.
  • 87
    Maines TR, Chen LM, Van Hoeven N et al. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 2011; 413:139147.
  • 88
    Sakabe S, Ozawa M, Takano R, Iwastuki-Horimoto K, Kawaoka Y. Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Res 2011; 158:124129.
  • 89
    Lycett SJ, Ward MJ, Lewis FI, Poon AF, Kosakovsky Pond SL, Brown AJ. Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses: multivariate analysis of published data. J Virol 2009; 83:99019910.
  • 90
    Maines TR, Lu XH, Erb SM et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 2005; 79:1178811800.
  • 91
    Fornek JL, Gillim-Ross L, Santos C et al. A single-amino-acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T-cell activation in mice. J Virol 2009; 83:1110211115.
  • 92
    Ping J, Dankar SK, Forbes NE et al. PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. J Virol 2010; 84:1060610618.
  • 93
    Koopmans M, Wilbrink B, Conyn M et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363:587593.
  • 94
    Belser JA, Bridges CB, Katz JM, Tumpey TM. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 2009; 15:859865. Review.
  • 95
    Fouchier RA, Schneeberger PM, Rozendaal FW et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 2004; 101:13561361.
  • 96
    Belser JA, Blixt O, Chen LM et al. Contemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility. Proc Natl Acad Sci USA 2008; 105:75587563.
  • 97
    De Wit E, Munster VJ, van Riel D et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 2010; 84:15971606.
  • 98
    Butt AM, Siddique S, Idrees M, Tong Y. Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol J 2010; 7:319.
  • 99
    Yu H, Zhou YJ, Li GX et al. Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health? Vet Microbiol 2011; 149:254261.
  • 100
    Butt KM, Smith GJD, Chen H et al. Human infection with an Avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 2005; 43:57605767.
  • 101
    Lin YP, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 2000; 97:96549658.
  • 102
    Sun Y, Pu J, Jiang Z et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol 2010; 146:215225.
  • 103
    Wu R, Zhang H, Yang K et al. Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol 2009; 138:8591.
  • 104
    Brockwell-Staats C, Webster RG, Webby RJ. Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza Other Respi Viruses 2009; 3:207213. Review.
  • 105
    Taubenberger JK, Reid AH, Janczewski TA, Fanning TG. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci 2001; 356:18291839. Review.
  • 106
    Kuntz-Simon G, Madec F. Genetic and antigenic evolution of swine influenza viruses in Europe and evaluation of their zoonotic potential. Zoonoses Public Health 2009; 56:310325. Review.
  • 107
    Dunham EJ, Dugan VG, Kaser EK et al. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J Virol 2009; 83:54855494.
  • 108
    Muramoto Y, Takada A, Fujii K et al. Hierarchy among viral RNA (vRNA) segments in their role in vRNA incorporation into influenza A virions. J Virol 2006; 80:23182325.
  • 109
    Nelson MI, Viboud C, Simonsen L et al. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 2008; 4:112.
  • 110
    Cong Y, Wang G, Guan Z et al. Reassortant between human-Like H3N2 and avian H5 subtype influenza A viruses in pigs: a potential public health risk. PLoS ONE 2010; 5:18.
  • 111
    Greenbaum BD, Li OT, Poon LL, Levine AJ, Rabadan R. Viral reassortment as an information exchange between viral segments. Proc Natl Acad Sci USA 2012; 109:33413346.
  • 112
    Kida H, Ito T, Yasuda J et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol 1994; 75:21832188.
  • 113
    Ma W, Lager KM, Vincent AL, Janke BH, Gramer MR, Richt JA. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 2009; 56:326337. Review.
  • 114
    Nidom CA, Takano R, Yamada S et al. Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis 2010; 16:15151523.
  • 115
    Hu Y, Liu X, Li S, Guo X, Yang Y, Jin M. Complete genome sequence of a novel H4N1 influenza virus isolated from a pig in Central China. J Virol 2012; 86:13879.
  • 116
    Wang N, Zou W, Yang Y et al. Complete genome sequence of an H10N5 avian influenza virus isolated from pigs in Central China. J Virol 2012; 86:1386513866.
  • 117
    Cong YL, Wang CF, Yan CM, Peng JS, Jiang ZL, Liu JH. Swine infection with H9N2 influenza viruses in China in 2004. Virus Genes 2008; 36:461469.
  • 118
    Girard MP, Tam JS, Assossou OM, Kieny MP. The 2009 A (H1N1) influenza virus pandemic: a review. Vaccine 2010; 28:48954902. Review.
  • 119
    Arias CF, Escalera-Zamudio M, Soto-Del Rio M de L, Cobian-Guemes AG, Isa P, Lopez S. Molecular anatomy of 2009 influenza virus A (H1N1). Arch Med Res 2009; 40:643654. Review.
  • 120
    Garten RJ, Davis CT, Russell CA et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science 2009; 325:197201.
  • 121
    Dong G, Luo J, Zhang H et al. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis. PLoS ONE 2011; 6:19.
  • 122
    Abbas MA, Spackman E, Swayne DE et al. Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995–2004. Virol J 2010; 7:137.
  • 123
    Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS ONE 2009; 4:e5788.
  • 124
    Wan H, Sorrell EM, Song H et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS ONE 2008; 3:113.
  • 125
    Kimble JB, Sorrell E, Shao H, Martin PL, Perez DR. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc Natl Acad Sci USA 2011; 108:1208412088.
  • 126
    Dos Reis M, Tamuri AU, Hay AJ, Goldstein RA. Charting the host adaptation of influenza viruses. Mol Biol Evol 2011; 28:17551767.
  • 127
    Allen JE, Gardner SN, Vitalis EA, Slezak TR. Conserved amino acid markers from past influenza pandemic strains. BMC Microbiol 2009; 9:77.
  • 128
    Miotto O, Heiny AT, Albrecht R et al. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains. PLoS ONE 2010; 5:113.
  • 129
    Ilyushina NA, Khalenkov AM, Seiler JP et al. Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 2010; 84:86078616.
  • 130
    Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 2008; 4:e1000079.
  • 131
    Tang JW, Shetty N, Lam TT, Hon KL. Emerging, novel, and known influenza virus infections in humans. Infect Dis Clin North Am 2010; 24:603617. Review.
  • 132
    Gammelin M, Altmüller A, Reinhardt U et al. Phylogenetic analysis of nucleoproteins suggests that human influenza A viruses emerged from a 19th-century avian ancestor. Mol Biol Evol 1990; 7:194200.
  • 133
    Guan Y, Vijaykrishna D, Bahl J, Zhu H, Wang J, Smith GJ. The emergence of pandemic influenza viruses. Protein Cell 2010; 1:913. Review.
  • 134
    Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 1989; 63:46034608.
  • 135
    Christman MC, Kedwaii A, Xu J, Donis RO, Lu G. Pandemic (H1N1) 2009 virus revisited: an evolutionary retrospective. Infect Genet Evol 2011; 11:803811.
  • 136
    Smith GJ, Vijaykrishna D, Bahl J et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459:11221125.
  • 137
    Schrauwen EJ, Herfst S, Chutinimitkul S et al. Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment. Emerg Infect Dis 2011; 17:200208.
  • 138
    Li W, Shi W, Qiao H et al. Positive selection on hemagglutinin and neuraminidase genes of H1N1 influenza viruses. Virol J 2011; 8:183.
  • 139
    Hiromoto Y, Parchariyanon S, Ketusing N et al. Isolation of the pandemic (H1N1) 2009 virus and its reassortant with an H3N2 swine influenza virus from healthy weaning pigs in Thailand in 2011. Virus Res 2012; 169:175181.
  • 140
    Han JY, Park SJ, Kim HK et al. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs. J Microbiol Biotechnol 2012; 22:699707.
  • 141
    Chen H, Wen X, To KK et al. Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J Infect Dis 2010; 201:15171521.
  • 142
    Kilander A, Rykkvin R, Dudman SG, Hungnes O. Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 2010; 15:13.
  • 143
    Mak GC, Leung CK, Cheng KC, Wong KY, Lim W. Evolution of the haemagglutinin gene of the influenza A (H1N1) 2009 virus isolated in Hong Kong, 2009–2011. Euro Surveill 2011; 16:19807.
  • 144
    Maurer-Stroh S, Lee RT, Eisenhaber F, Cui L, Phuah SP, Lin RT. A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Curr 2010; 2:17.
  • 145
    Gubbay J. Reassortment following coinfection with seasonal H3N2 and pandemic (H1N1) 2009 viruses in Ontario, Canada. 2011. ProMED-mail post. Archive number: 20110609.1749.
  • 146
    Liu W, Li ZD, Tang F et al. Mixed infections of pandemic H1N1 and seasonal H3N2 viruses in 1 outbreak. Clin Infect Dis 2010; 50:13591365.
  • 147
    Bastien N, Antonishyn NA, Brandt K et al. Human infection with a triple-reassortant swine influenza A(H1N1) virus containing the hemagglutinin and neuraminidase genes of seasonal influenza virus. J Infect Dis 2010; 201:11781182.
  • 148
    Nagarajan K, Saikumar G, Arya RS, Gupta A, Somvanshi R, Pattnaik B. Influenza A H1N1 virus in Indian pigs and its genetic relatedness with pandemic human influenza A 2009 H1N1. Indian J Med Res 2010; 132:160167.
  • 149
    Nfon CK, Berhane Y, Hisanaga T et al. Characterization of H1N1 swine influenza viruses circulating in Canadian pigs in 2009. J Virol 2011; 85:86678679.
  • 150
    Poon LL, Mak PW, Li OT et al. Rapid detection of reassortment of pandemic H1N1/2009 influenza virus. Clin Chem 2010; 56:13401344.
  • 151
    Zhao G, Fan Q, Zhong L et al. Isolation and phylogenetic analysis of pandemic H1N1/09 influenza virus from swine in Jiangsu province of China. Res Vet Sci 2012; 93:125132.
  • 152
    Octaviani CP, Li C, Noda T, Kawaoka Y. Reassortment between seasonal and swine-origin H1N1 influenza viruses generates viruses with enhanced growth capability in cell culture. Virus Res 2011; 156:147150.
  • 153
    Octaviani CP, Goto H, Kawaoka Y. Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits. J Virol 2011; 85:84498452.
  • 154
    Chutinimitkul S, Herfst S, Steel J et al. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A (H1N1) virus affects receptor binding. J Virol 2010; 84:1180211813.
  • 155
    Yamada S, Suzuki Y, Suzuki T et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006; 444:378382.
  • 156
    Gao Y, Zhang Y, Shinya K et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 2009; 5:111.
  • 157
    Stevens J, Blixt O, Chen LM, Donis RO, Paulson JC, Wilson IA. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J Mol Biol 2008; 381:13821394.
  • 158
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature 2005; 437:889893.
  • 159
    Ping J, Keleta L, Forbes NE et al. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS ONE 2011; 6:121.
  • 160
    Bussey KA, Desmet EA, Mattiacio JL et al. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J Virol 2011; 85:70207028.