• 1
    Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication; in Knipe DM, Howley PM (eds): Fields Virology, 5th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2007; 16471689.
  • 2
    Palese P. The genes of influenza virus. Cell 1977; 10:110.
  • 3
    Biswas SK, Boutz PL, Nayak DP. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol 1998; 72:54935501.
  • 4
    Ma W, Kahn RE, Richt JA. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med 2008; 3:158166.
  • 5
    Nelson MI, Viboud C, Simonsen L et al. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 2008; 4:e1000012.
  • 6
    Lindstrom SE, Cox NJ, Klimov A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 2004; 328:101119.
  • 7
    Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 1989; 63:46034608.
  • 8
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature 2005; 437:889893.
  • 9
    Antonovics J, Hood ME, Baker CH. Molecular virology: was the 1918 flu avian in origin? Nature 2006;440:E9; discussion E-10.
  • 10
    Gibbs MJ, Gibbs AJ. Molecular virology: was the 1918 pandemic caused by a bird flu? Nature 2006;440:E8; discussion E9–10.
  • 11
    Vana G, Westover KM. Origin of the 1918 Spanish influenza virus: a comparative genomic analysis. Mol Phylogenet Evol 2008; 47:11001110.
  • 12
    Smith GJ, Vijaykrishna D, Bahl J et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459:11221125.
  • 13
    Kingsford C, Nagarajan N, Salzberg SL. 2009 Swine-origin influenza A (H1N1) resembles previous influenza isolates. PLoS ONE 2009; 4:e6402.
  • 14
    Dawood FS, Jain S, Finelli L et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360:26052615.
  • 15
    Li OT, Chan MC, Leung CS et al. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS ONE 2009; 4:e5658.
  • 16
    Chen J, Sun DX, Wu CFJ. A catalogue of two-level and three-level fractional factorial designs with small runs. Int Stat Rev 1993; 61:131145.
  • 17
    Xu H. A catalogue of three-level regular fractional factorial designs. Metrika 2005; 62:259281.
  • 18
    Bradel-Tretheway BG, Kelley Z, Chakraborty-Sett S, Takimoto T, Kim B, Dewhurst S. The human H5N1 influenza A virus polymerase complex is active in vitro over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit. J Gen Virol 2008; 89:29232932.
  • 19
    Lang V, Marjuki H, Krauss SL, Webby RJ, Webster RG. Different incubation temperatures affect viral polymerase activity and yields of low-pathogenic avian influenza viruses in embryonated chicken eggs. Arch Virol 2011; 156:987994.
  • 20
    Uiprasertkul M, Puthavathana P, Sangsiriwut K et al. Influenza A H5N1 replication sites in humans. Emerg Infect Dis 2005; 11:10361041.
  • 21
    Xu C, Hu WB, Xu K et al. Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J Gen Virol 2012; 93:531540.
  • 22
    Zhu W, Zhu Y, Qin K et al. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS ONE 2012; 7:e33383.
  • 23
    Mehle A, Dugan VG, Taubenberger JK, Doudna JA. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol 2012; 86:17501757.
  • 24
    Vijaykrishna D, Smith GJ, Pybus OG et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 2011; 473:519522.