SEARCH

SEARCH BY CITATION

References

  • Appelgren, L.H., 1969. A column generation approach for a ship scheduling problem. Transportation Science 3, 5368.
  • Balas, E., Padberg, M., 1979. Set partitioning—a survey. In Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds) Combinatorial Optimization, Wiley, New York, pp. 151210.
  • Barahona, F., Anbil, R., 2002 On some difficult linear programs coming from set partitioning. Discrete Applied Mathematics 118, 311.
  • Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M.W.P., Vance, H., 1998. Branch-and-price: column generation for solving huge integer programs. Operations Research 46, 3, 316332.
  • Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 1993. Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, Hoboken, NJ.
  • Ben-Amor, H., Desrosiers, J., 2006. A proximal trust-region algorithm for column generation stabilization. Computers and Operations Research 33, 910927.
  • Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F., 2008. Comparison of bundle and classical column generation. Mathematical Programming 113, 299344.
  • Cavalcante, V. F., de Souza, C. C., Lucena, A., 2008. A relax-and-cut algorithm for the set partitioning problem. Computers and Operations Research 35, 6, 19631981.
  • Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds), 2005. Column Generation. Springer, New York.
  • du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P., 1999. Stabilized column generation. Discrete Mathematics 194, 229237.
  • Elhallaoui, I., Villeneuve, D., Soumis, F., Desaulniers, G., 2005. Dynamic aggregation of set-partitioning constraints in column generation. Operations Research 53, 4, 632645.
  • Elhedhli, S., Goffin, J.-L., 2004. The integration of an interior-point cutting plane method within a branch-and-price algorithm. Mathematical Programming 100, 267294.
  • Eveborn, P., Rönnqvist, M., Almroth, M., Eklund, M., Einarsdóttir, H., Lidén, K., 2009. Operations research improves quality and efficiency in home care. Interfaces 39, 1834.
  • Gregory, C., Kochenberger, G., 1988. Using surrogate constraints in a Lagrangian relaxation approach to set-covering problems. Journal of the Operational Research Society 39, 681685.
  • Hoffman, K.L., Padberg, M., 1993. Solving airline crew scheduling problems by branch-and-cut. Management Science 39, 6, 657682.
  • Joseph, A., 2002. A concurrent processing framework for the set partitioning problem. Computers and Operations Research 29, 13751391.
  • Karwan, M., Rardin, R., 1979. Some relationships between Lagrangian and surrogate duality in integer programming. Mathematical Programming 17, 320334.
  • Lequy, Q., Bouchard, M., Desaulniers, G., Soumis, F., Tachefine, B., 2012. Assigning multiple activities to work shifts. Journal of Scheduling 15, 239251.
  • Lübbecke, M. E., Desrosiers, J., 2005. Selected topics in column generation. Operations Research 53, 6, 10071023.
  • Marsten, R.E., Hogan, W.W., Blankenship, J.W., 1975. The boxstep method for large-scale optimization. Operations Research 23, 3, 389405.
  • Nemhauser, G.L., Wolsey, L.A. 1988. Integer and Combinatorial Optimization. John Wiley & Sons, New York.
  • Rousseau, L.-M., Gendreau, M., Feillet, D., 2007. Interior point stabilization for column generation. Operations Research Letters 35, 5, 660668.
  • Ryan, D.M., Foster, B.A., 1981. An integer programming approach to scheduling. In Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling North-Holland, Amsterdam, pp. 269280.
  • Vanderbeck, F., 1994. Decomposition and column generation for integer programs. PhD thesis, Université Catholique de Louvain, Belgium.