• Hierarchical models;
  • Meta-analysis;
  • Predictive distributions

Summary. Pharmacokinetic data consist of drug concentrations with associated known sampling times and are collected following the administration of known dosage regimens. Population pharmacokinetic data consist of such data on a number of individuals, possibly along with individual-specific characteristics. During drug development, a number of population pharmacokinetic studies are typically carried out and the combination of such studies is of great importance for characterizing the drug and, in particular, for the design of future studies. In this paper, we describe a model that may be used to combine population pharmacokinetic data. The model is illustrated using six phase I studies of the antiasthmatic drug fluticasone propionate. Our approach is Bayesian and computation is carried out using Markov chain Monte Carlo. We provide a number of simplifications to the model that may be made in order to ease simulation from the posterior distribution.