SEARCH

SEARCH BY CITATION

Keywords:

  • transgenic plants;
  • natural enemies;
  • predators;
  • parasitoids;
  • laboratory tests;
  • life history;
  • stress factors;
  • genetic modification

Abstract

We reviewed laboratory tests which studied the impact of genetically modified plants on arthropod natural enemies. A total of 18 species of predators and 14 species of parasitoids have been tested, most in only a few experiments. Certain groups (braconid wasps) or species (the green lacewing, Chrysoperla carnea) have attracted much effort, while representatives of others, including whole orders (e.g., Diptera), have never had a species tested. We conclude that laboratory tests are not the ‘worst case’ scenarios intended by the experimental designs, and are not often ecologically realistic: they typically provided ad libitum feeding, no prey choice, single prey type, no combination of stress factors and usually uniform temperatures. None of these are representative of field conditions, yet most could be easily mimicked in more complex laboratory tests. In most cases (94.6%), the studies were unable to indicate the level of power required to detect any impact. Small sample size and large variability are factors that mask all but very large differences in potential effects. For predators, 126 parameters were quantified, most commonly including survival/mortality (37 cases), development time (22), and body mass/size (20). For parasitoids, 128 parameters were quantified, the majority involving lectins or proteinase inhibitors. Most frequent measurements were: fecundity (23 experiments), adult longevity, extent of parasitism (17 each), body size, mortality, and larval development time. An aggregative scoring (summarising all quantified parameters) indicated that the laboratory tests quantified a remarkable number of cases (30% for predators, 39.8% for parasitoids), where the impacts of the genetically modified plant were significantly negative. These involve various parameters, organisms, test methods, and significance levels, but collectively they indicate that the use of genetically modified crops may result in negative effects on the natural enemies of crop pests.