SEARCH

SEARCH BY CITATION

References

  • Amprino R (1947) La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Arch. Biol. 58, 315330.
  • Bloebaum RD, Skedros JG, Vajda EG, Bachus KN, Constantz BR (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20, 485490.
  • Boskey AL, Wright TM, Blank RD (1999) Collagen and bone strength. J. Bone Miner. Res. 14, 330335.
  • Boyde A, Riggs CM (1990) The quantitative study of the orientation of collagen in compact bone slices. Bone 11, 3539.
  • Bromage TG, Goldman HM, McFarlin SC, Warshaw J, Boyde A, Riggs CM (2003) Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. 274B, The New Anatomist, 157168.
  • Carrano MT, Biewener AA (1999) Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion. J. Morphol. 240, 237249.
  • Carrier DR, Leon LR (1990) Skeletal growth and function in the California gull (Larus californicus). J. Zool. Lond. 222, 375389.
  • Castanet J, Grandin A, Abourachid A, De Ricqlès A (1996) Expression of growth dynamic in the structure of the periosteal bone in the mallard, Anas platyrhynchos. CR. Acad. Sci. III 319, 301308.
  • Currey JD (2002) Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press.
  • Emmanual J, Hornbeck C, Bloebaum RD (1987) A polymethyl methacrylate method for large specimens of mineralized bone with implants. Stain Technol. 62, 401410.
  • Hodges E (1989) Guild Handbook of Scientific Illustration. New York: Van Nostrand Reinhold.
  • Judex S, Gross TS, Bray RC, Zernicke RF (1997) Adaptation of bone to physiological stimuli. J. Biomech. 30, 421429.
  • Kalmey JK, Lovejoy CO (2002) Collagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading? Bone 31, 327332.
  • Lanyon LE, Bourn S (1979) The influence of mechanical function on the development and remodeling of the tibia: An experimental study in sheep. J. Bone Joint Surg. 61-A, 263273.
  • Lee AH (2004) Histological organization and its relationship to function in the femur of Alligator mississippiensis. J. Anat. 204, 197207.
  • Lucas AM, Stettenheim PR (1972) Avian Anatomy Integument. Part I. Washington, DC: US Government Printing Office.
  • De Margerie E (2002) Laminar bone as an adaptation to torsional loads in flapping flight. J. Anat. 201, 521526.
  • De Margerie E, Cubo J, Castanet J (2002) Bone typology and growth rate: testing and quantifying ‘Amprino's rule’ in the mallard (Anas platyrhynchos). CR. Biol. 325, 221230.
  • De Margerie E, Robin J-P, Verrier D, Cubo J, Groscolas R, Castanet J (2004) Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the King Penguin chick (Aptenodytes patagonicus). J. Exp. Biol. 207, 869879.
  • Martin RB, Burr DB (1989) Structure, Function and Adaptation of Compact Bone. New York: Raven Press.
  • Martin RB, Mathews PV, Lau ST, Gibson VA, Stover SM (1996) Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. J. Biomech. 29, 15151521.
  • Mason MW, Skedros JG, Bloebaum RD (1995) Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. Bone 17, 229237.
  • Mori R, Kodaka T, Sano T, Yamagishi N, Asari M, Naito Y (2003) Comparative histology of the laminar bone between young calves and foals. Cell Tissue Organs 175, 4350.
  • Petrtýl M, Heřt J, Fiala P (1996) Spatial organization of Haversian bone in man. J. Biomech. 29, 161169.
  • Puustjarvi K, Nieminen J, Rasanen T, Hyttinen M, Helminen HJ, Kroger H, et al. (1999) Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training. J. Bone Miner. Res. 14, 321329.
  • De Ricqlès A, Meunier FJ, Castanet L, Francillon-Vieillot H (1991) Comparative microstructure of bone. In Bone Matrix and Bone-Specific Products (ed. Hall BK), pp. 178. Boca Raton, FL: CRC Press.
  • Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37, 411417.
  • Skedros JG, Mason MW, Nelson MC, Bloebaum RD (1996) Evidence of structural and material adaptation to specific strain features in cortical bone. Anat. Rec. 246, 4763.
  • Skedros JG (2001) Collagen fiber orientation: a characteristic of strain-mode-related regional adaptation in cortical bone. Bone 28, S110S111.
  • Skedros JG (2002) Use of predominant collagen fiber orientation for interpreting cortical bone loading history: Bending vs. torsion. J. Bone Miner. Res. 17, 000000 .
  • Skedros JG, Demes B, Judex S (2003a) Limitations in the use of predominant collagen fiber orientation for inferring loading history in cortical bone. Am. J. Phys. Anthrop. Suppl. 36, 193.
  • Skedros JG, Hunt KJ, Hughes P, , E, Winet H (2003b) Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat. Rec. 273A, 609629.
  • Sokal RR, Rohlf FJ (1995) Biometry. The Principles and Practice of Statistics in Biological Research, 2nd edn. New York: W.H. Freeman.
  • Stover SM, Pool RR, Martin RB, Morgan JP (1992) Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses. J. Anat. 181, 455469.
  • Takano Y, Turner CH, Owan I, Martin RB, Lau ST, Forwood MR, Burr DB (1999) Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J. Orthop. Res. 17, 5966.
  • Zioupos P, Currey JD (1994) The extent of microcracking and morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978986.