Evidence for limiting similarity in a sand dune community


J. Bastow Wilson (fax +3 479 7583; e-mail Bastow@otago.ac.nz).


  • 1We sought evidence among the plant species of a New Zealand sand dune community that limiting similarity controls the ability of species to coexist. Sampling was at four spatial scales, from a single point up to a scale of 50 m2. Twenty-three functional characters were measured on each of the species, covering the morphology of the shoot and root systems and nutrient status, and intended to represent modes of resource acquisition.
  • 2Patterns of association between plant species at the four scales were examined for any tendency for plants with similar functional characters to coexist less often than expected at random (e.g. if a point has three species, do they have notably different characters?) The observed results were compared with the patterns expected under a null model using a range of test statistics.
  • 3A test over all characters found that the mean dissimilarity between nearest-neighbour species in functional space, and the minimum dissimilarity, were greater than expected under the null model at the 0.5 × 0.5 m scale. This supports the MacArthur & Levins model, although the actual community did not show an even spread of species over functional space.
  • 4Limiting similarity effects were seen even more consistently in separate characters when within-species variation was taken into account to calculate measures of overlap. The characters involved were mainly those related to rooting patterns and leaf water control, and thus perhaps reflecting the acquisition of nutrients and/or water.
  • 5Our results seem to be amongst the most convincing support for the theory of limiting similarity, and the only example involving vegetative processes in plant communities. The characters involved suggest that species can more readily coexist if they differ in their water-use pattern, reducing competition between them.