Many recent studies suggest that more diverse communities are more resistant to invasion. Community characteristics that most strongly influence invasion are uncertain, however, due to covariation of diversity with competition and crowding. We examined separately the effects of species richness and dominance on invasion by an exotic legume, Melilotus officinalis, in intact, native Kansas grassland. We manipulated dominance of C4 grasses by reducing their abundance (i.e. ramet densities) by ∼25 and 50%. In addition, richness was reduced by removing species that were mainly rare and uncommon as might be expected with environmental changes such as drought and fragmentation. In both years of the study (2001–2002), invasibility, measured as peak establishment of Melilotus, was not affected by a 3-fold reduction in species richness, nor was there an interaction between loss of species and reduced dominance on invasion. In contrast, reductions in abundance of the dominants significantly reduced invasibility of the grassland plots in both years. Because the abundance of dominants was highly correlated with measures of competition (i.e. ratio of dominant biomass to total biomass) and crowding (total stem densities), this pattern was opposite to that expected if competition were indeed limiting invasion. Rather, invasion appeared to be facilitated by the dominant species, most likely because reduced dominance increased environmental stress. Our results suggest that dominance is the key community characteristic determining invasibility, because highly competitive and space-filling species can either enhance or reduce susceptibility to invasion depending on whether dominants create a more competitive environment or alleviate stressful conditions.