SEARCH

SEARCH BY CITATION

References

  • 1
    Girolomoni G, Gisondi P, Ottaviani C, Cavani A. Immunoregulation of allergic contact dermatitis. J Dermatol 2004: 31: 264270.
  • 2
    Rustemeyer T, Von Blomberg B M, Van Hoogstraten I M, Bruynzeel D P, Scheper R J. Analysis of effector and regulatory immune reactivity to nickel. Clin Exp Allergy 2004: 34: 14581466.
  • 3
    Coombs R R A, Gell P G H. Classification of allergic reactions for clinical hypersensitivity and disease. In: GellP G H, CoombsR R A, LachmanR (eds). Clinical Aspects of Immunology. London, Blackwell Scientific, 1975: 761781.
  • 4
    Rietschel R L, Fowler J F. Fisher's Contact Dermatitis, 5th edition. Philadelphia, Lippincott Williams & Wilkins, 2001.
  • 5
    Smith C K, Hotchkiss S A M. Allergic Contact Dermatitis – Chemical and Metabolic Mechanisms. UK, Taylor & Francis, 2001.
  • 6
    Basketter D A, Gerberick G F, Kimber I. Measurement of allergenic potency using the local lymph node assay. Trends Pharmacol Sci 2001: 22: 264265.
  • 7
    Ryan C A, Gerberick G F, Cruse L W et al. Activity of human contact allergens in the murine local lymph node assay. Contact Dermatitis 2000: 43: 95102.
  • 8
    Hostynek J J, Magee P S, Maibach H I. QSAR predictive of contact allergy: scope and limitations. Curr Probl Dermatol 1996: 25 1827.
  • 9
    EU. Directive 2003/15/EC of the European Parliament and of the Council of 27 February 2003 amending Council Directive 76/768/EEC on the approximation of the laws of the Member States relating to cosmetic products (‘7th Amendment to the European Cosmetics Directive’). Off J Eur Union 2003: L 66: 2635.
  • 10
    Casati S, Aeby P, Basketter D A et al. Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. Altern Lab Anim 2005: 33: 4762.
  • 11
    Krasteva M, Peguet-Navarro J, Moulon C, Courtellemont P, Redziniak G, Schmitt D. In vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells – a screening predictive assay for contact sensitizers. Clin Exp Allergy 1996: 26: 563570.
  • 12
    Rougier N, Redziniak G, Mougin D, Schmitt D, Vincent C. In vitro evaluation of the sensitization potential of weak contact allergens using langerhans-like dendritic cells and autologous T cells. Toxicology 2000: 145: 7382.
  • 13
    Rougier N, Redziniak G, Schmitt D, Vincent C. Evaluation of the capacity of dendritic cells derived from cord blood CD34+ precursors to present haptens to unsensitized autologous T cells in vitro. J Invest Dermatol 1998: 110: 348352.
  • 14
    Guironnet G, Dalbiez-Gauthier C, Rousset F, Schmitt D, Peguet-Navarro J. In vitro human T cell sensitization to haptens by monocyte-derived dendritic cells. Toxicol In Vitro 2000: 14: 517522.
  • 15
    Aiba S, Manome H, Nakagawa S et al. p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol 2003: 120: 390399.
  • 16
    Boisleve F, Kerdine-Romer S, Pallardy M. Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha. Toxicology 2005: 206: 233244.
  • 17
    Gerberick G F, Vassallo J D, Bailey R E, Chaney J G, Morrall S W, Lepoittevin J P. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 2004: 81: 332343.
  • 18
    Kato H, Okamoto M, Yamashita K et al. Peptide-binding assessment using mass spectrometry as a new screening method for skin sensitization. J Toxicol Sci 2003: 28: 1924.
  • 19
    Dupuis G, Benezra C. Contact Dermatitis to Simple Chemicals: A Molecular Approach. New York, Marcel Dekker, 1982.
  • 20
    Landsteiner K, Jacobs J. Studies on the sensitisation of animals with simple chemical compounds. J Exp Med 1935: 61: 643656.
  • 21
    Pichler W J. Predictive drug allergy testing: an alternative viewpoint. Toxicology 2001: 158: 3141.
  • 22
    Ahmed N, Dobler D, Dean M, Thornalley P J. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 2005: 208: 57245732.
  • 23
    Baker A, Zidek L, Wiesler D, Chmelik J, Pagel M, Novotny M V. Reaction of N-acetylglycyllysine methyl ester with 2-alkenals: an alternative model for covalent modification of proteins. Chem Res Toxicol 1998: 11: 730740.
  • 24
    Conduah Birt J E, Shuker D E, Farmer P B. Stable acetaldehyde – protein adducts as biomarkers of alcohol exposure. Chem Res Toxicol 1998: 11: 136142.
  • 25
    Nerland D E, Cai J, Benz F W. Selective covalent binding of acrylonitrile to Cys 186 in rat liver carbonic anhydrase III in vivo. Chem Res Toxicol 2003: 16: 583589.
  • 26
    Person M, Monks T J, Lau S S. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem Res Toxicol 2003: 16: 598608.
  • 27
    Tracey B M, Shuker D E. Characterization of azo coupling adducts of benzenediazonium ions with aromatic amino acids in peptides and proteins. Chem Res Toxicol 1997: 10: 13781386.
  • 28
    Walker J E. Lysine residue 199 of human serum albumin is modified by acetylsalicyclic acid. FEBS Lett 1976: 66: 173175.
  • 29
    Fabrizi L, Taylor G W, Canas B, Boobis A R, Edwards R J. Adduction of the chloroform metabolite phosgene to lysine residues of human histone H2B. Chem Res Toxicol 2003: 16: 266275.
  • 30
    Baron J M, Merk H F. Drug metabolism in the skin. Curr Opin Allergy Clin Immunol 2001: 1: 287291.
  • 31
    Pease C, Basketter D A, Patlewicz G. Contact allergy: the role of skin chemistry and metabolism. Exp Dermatol 2002: 28: 177183.
  • 32
    Smith C K, Moore C A, Elahi E N, Smart A T, Hotchkiss S A. Human skin absorption and metabolism of the contact allergens, cinnamic aldehyde, and cinnamic alcohol. Toxicol Appl Pharmacol 2000: 168: 189199.
  • 33
    Lepoittevin J P. Molecular Aspects of Allergic Contact Dermatitis, 3rd edition. Berlin, Heidelberg, Springer Verlag, 2001: 5991.
  • 34
    Gerberick G F, Ryan C A, Kern P S et al. A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. Contact Dermatitis 2004: 50: 274288.
  • 35
    Celis J E, Ostergaard M, Jensen N A, Gromova I, Rasmussen H H, Gromov P. Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett 1998: 430: 6472.
  • 36
    Elahi E N, Wright Z M, Hinselwood D, Hotchkiss S A, Basketter D A, Pease C. Protein binding and metabolism influence the relative skin sensitization potential of cinnamic compounds. Chem Res Toxicol 2004: 17: 301310.
  • 37
    Peters T Jr. All About Albumin – Biochemistry, Genetics and Medical Applications. San Diego, Academic Press, 1996.
  • 38
    Yasuzawa T, Tomer K B. Structural determination of the conjugate of human serum albumin with a mitomycin C derivative, KW-2149, by matrix-assisted laser desorption/ionization mass spectrometry. Bioconjug Chem 1997: 8: 391399.
  • 39
    Bohney J P, Fonda M L, Feldhoff R C. Identification of Lys190 as the primary binding site for pyridoxal 5′-phosphate in human serum albumin. FEBS Lett 1992: 298: 266268.
  • 40
    Bertucci C, Ascoli G, Uccello-Barretta G, Di Bari L, Salvadori P. The binding of 5-fluorouracil to native and modified human serum albumin: UV, CD, and 1H and 19F NMR investigation. J Pharm Biomed Anal 1995: 13: 10871093.
  • 41
    Meschkat E, Barratt M D, Lepoittevin J P. Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 2. NMR studies of the covalent binding of the (13)c-labelled skin sensitizers 2-[13C]- and 3-[13C]hex-1-ene- and 3-[13C]hexane-1,3-sultones to human serum albumin. Chem Res Toxicol 2001: 14: 118126.
  • 42
    Alvarez-Sanchez R, Divkovic M, Basketter D A et al. Effect of glutathione on the covalent binding of the (13)C-Labelled Skin Sensitizer 5-chloro-2-methylisothiazol-3-one to human serum albumin: identification of adducts by nuclear magnetic resonance, matrix-assisted laser desorption/ionization mass spectrometry, and nanoelectrospray tandem mass spectrometry. Chem Res Toxicol 2004: 17: 12801288.
  • 43
    Parker D, Long P V, Turk J L. A comparison of the conjugation of DNTB and other dinitrobenzenes with free protein radicals and their ability to sensitize or tolerise. J Invest Dermatol 1983: 81: 198201.
  • 44
    Alvarez-Sanchez R, Basketter D A, Pease C, Lepoittevin J P. Covalent binding of the 13C-labeled skin sensitizers 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) to a model peptide and glutathione. Bioorg Med Chem Lett 2004: 14: 365368.
  • 45
    Ahlfors S R, Sterner O, Hansson C. Reactivity of contact allergenic haptens to amino acid residues in a model carrier peptide, and characterisation of formed peptide-hapten adducts. Skin Pharmacol Appl Skin Physiol 2003: 16: 5968.
  • 46
    Hansson C, Ahlfors S, Sterner O. Reactivities of contact allergenic quinones towards a model peptide and identification of the adducts. Abstract 320, Annual meeting for the European Society for Dermatological Research. J Invest Dermatol 1999: 113: 484.
  • 47
    Nilsson A M, Bergstrom M A, Luthman K, Nilsson J L, Karlberg A T. A conjugated diene identified as a prohapten: contact allergenic activity and chemical reactivity of proposed epoxide metabolites. Chem Res Toxicol 2005: 18: 308316.
  • 48
    Franot C, Roberts D W, Smith R G, Basketter D A, Benezra C, Lepoittevin J P. Structure-activity relationships for contact allergenic potential of γ,γ-dimethyl-γ-butyrolactone derivatives. 1. Synthesis and electrophilic reactivity studies of alpha-(omega-substituted-alkyl)-γ,γ-dimethyl- γ-butyrolactones and correlation of skin sensitization potential and cross-sensitization patterns with structure. Chem Res Toxicol 1994: 7: 297306.
  • 49
    Meschkat E, Barratt M D, Lepoittevin J P. Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 1. Synthesis and studies on the reactivity toward model nucleophiles of the (13)C-labelled skin sensitizers hex-1-ene- and hexane-1,3-sultones. Chem Res Toxicol 2001: 14: 110117.
  • 50
    Alvarez-Sanchez R, Basketter D A, Pease C, Lepoittevin J P. Studies of chemical selectivity of hapten, reactivity, and skin sensitization potency. 3. Synthesis and studies on the reactivity toward model nucleophiles of the 13C-labeled skin sensitizers, 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI). Chem Res Toxicol 2003: 16: 627636.
  • 51
    Basketter D A, Dooms-Goossens A, Karlberg A T, Lepoittevin J P. The chemistry of contact allergy: why is a molecule allergenic? Contact Dermatitis 1995: 32: 6573.
  • 52
    Schmidt R J, Khan L, Chung L Y. Are free radicals and not quinones the haptenic species derived from urushiols and other contact allergenic mono- and dihydric alkylbenzenes? The significance of NADH, glutathione, and redox cycling in the skin. Arch Dermatol Res 1990: 282: 5664.
  • 53
    Lepoittevin J P, Basketter D, Goossens A, Karlberg A T. Hapten–Protein Interactions. Berlin Heidelberg, Springer-Verlag, 1998: 82109.
  • 54
    Sinigaglia F. The molecular basis of metal recognition by T cells. J Invest Dermatol 1994: 102: 398401.
  • 55
    Thierse H J, Moulon C, Allespach Y et al. Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J Immunol 2004: 172: 19261934.
  • 56
    Franot C, Roberts D W, Basketter D A, Benezra C, Lepoittevin J P. Structure-activity relationships for contact allergenic potential of γ,γ-dimethyl-γ-butyrolactone derivatives. 2. Quantitative structure-skin sensitization relationships for α-substituted-α-methyl-γ,γ-dimethyl-γ-butyrolactones. Chem Res Toxicol 1994: 7: 307312.
  • 57
    Basketter D A, Rodford R, Kimber I, Smith I, Wahlberg J E. Skin sensitization risk assessment: a comparative evaluation of 3 isothiazolinone biocides. Contact Dermatitis 1999: 40: 150154.
  • 58
    Collier P J, Ramsey A J, Austin P, Gilbert P. Growth inhibitory and biocidal activity of some isothiazolone biocides. J Appl Bacteriol 1990: 69: 569577.
  • 59
    Collier P J, Ramsey A, Waigh R D, Douglas K T, Austin P, Gilbert P. Chemical reactivity of some isothiazolone biocides. J Appl Bacteriol 1990: 69: 578584.
  • 60
    Basketter D A, Scholes E W, Fielding I, Dearman R J, Hilton J, Kimber I. Dichloronitrobenzene: a reappraisal of its skin sensitization potential. Contact Dermatitis 1996: 34: 5558.
  • 61
    Divkovic M, Basketter D A, Gilmour N et al. Protein-hapten binding: challenges and limitations for in vitro skin sensitization assays. J Toxicol Cutan Ocular Toxicol 2003: 22: 8799.
  • 62
    Hopkins J E, Naisbitt D J, Kitteringham N R, Dearman R J, Kimber I, Park B K. Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem Res Toxicol 2005: 18: 375381.
  • 63
    Huang C-M, Elmets C A, Van Kampen K R et al. Prospective highlights of functional skin proteomics. Mass Spectrom Rev 2005: 24: 647660.
  • 64
    Hayden J B, McCormack A L, Yates J R III, Davey M P. Analysis of naturally processed peptides eluted from HLA DRB1*0402 and *0404. J Neurosci Res 1996: 45: 795802.
  • 65
    Lippolis J D, White F M, Marto J A et al. Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol 2002: 169: 50895097.
  • 66
    Sharif S, Mallard B A, Wilkie B N. Characterization of naturally processed and presented peptides associated with bovine major histocompatibility complex (BoLA) class II DR molecules. Anim Genet 2003: 34: 116123.
  • 67
    Suri A, Walters J J, Kanagawa O, Gross M L, Unanue E R. Specificity of peptide selection by antigen-presenting cells homozygous or heterozygous for expression of class II MHC molecules: the lack of competition. Proc Natl Acad Sci U S A 2003: 100: 53305335.
  • 68
    Park J H, Lee Y J, Kim K L, Cho E W. Selective isolation and identification of HLA-DR-associated naturally processed and presented epitope peptides. Immunol Invest 2003: 32: 155169.
  • 69
    Karlberg A T, Magnusson K, Nilsson U. Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 1992: 26: 332340.