SEARCH

SEARCH BY CITATION

Summary:  Parasitic protozoa of the genus Leishmania have provided a useful perspective for immunologists in terms of host defense mechanisms critical for the resolution of infection caused by intracellular pathogens. These organisms, which normally reside in a late endosomal, major histocompatibility complex (MHC) class II+ compartment within host macrophages cells, require CD4+ T-cell responses for the control of disease. The paradigm for the CD4+ T-helper 1 (Th1)/Th2 dichotomy is largely based on the curing/non-curing responses, respectively, to Leishmania major infection. However, this genus of parasitic protozoa is evolutionarily diverse, with the cutaneous disease-causing organisms of the Old World (L. major) and New World (Leishmania mexicana/ Leishmania amazonensis) having diverged 40–80 million years ago. Further adaptations to survive within the visceral organs (for Leishmania donovani, Leishmania chagasi, and Leishmania infantum) must have been required. Consequently, significant differences in host–parasite interactions have evolved. Different virulence factors have been identified for distinct Leishmania species, and there are profound differences in the immune mechanisms that mediate susceptibility/resistance to infection and in the pathology associated with disease. These variations not only point to interesting features of the host–pathogen interaction and immunobiology of this genus of parasitic protozoa, but also have important implications for immunotherapy and vaccine development.