SEARCH

SEARCH BY CITATION

References

  • 1
    Krogsgaard M, Davis M M. How T cells ‘see’ antigen. Nat Immunol 2005: 6: 239245.
  • 2
    Donnarumma G, Paoletti I, Buommino E, Tufano M A, Baroni A. α-MSH reduces the internalization of Staphylococcus aureus and down-regulates HSP 70, integrins and cytokine expression in human keratinocyte cell lines. Exp Dermatol 2004: 13: 748754.
  • 3
    Maurer M, Metz M. The status quo and quo vadis of mast cells. Exp Dermatol 2005: 14: 923929.
  • 4
    Elias P M, Choi E H. Interactions among stratum corneum defensive functions. Exp Dermatol 2005: 14: 719726.
  • 5
    Janeway C A Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002: 20: 197216.
  • 6
    Edwards L, Ferenczy A, Eron L et al. Self-administered topical 5% imiquimod cream for external anogenital warts. HPV Study Group. Human PapillomaVirus. Arch Dermatol 1998: 134: 2530.
  • 7
    Beutner K R, Geisse J K, Helman D, Fox T L, Ginkel A, Owens M L. Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol 1999: 41: 10021007.
  • 8
    Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988: 52: 269279.
  • 9
    Lemaitre B, Nicolas E, Michaut L, Reichhart J M, Hoffmann J A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996: 86: 973983.
  • 10
    Medzhitov R, Preston-Hurlburt P, Kopp E et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998: 2: 253258.
  • 11
    Heil F, Ahmad-Nejad P, Hemmi H et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 2003: 33: 29872907.
  • 12
    Latz E, Schoenemeyer A, Visintin A et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004: 5: 190198.
  • 13
    Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel D V. TRAF6 is a signal transducer for interleukin-1. Nature 1996: 383: 443446.
  • 14
    Courtois G. NF-κB in skin homeostasis. Exp Dermatol 2005: 14: 781782.
  • 15
    Weil R, Israel A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-kappaB in lymphocytes. Curr Opin Immunol 2004: 16: 374387.
  • 16
    Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999: 11: 115122.
  • 17
    Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S. Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 2001: 166: 56885694.
  • 18
    Kobayashi K, Hernandez L D, Galan J E, Janeway C A Jr, Medzhitov R, Flavell R A. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002: 110: 191202.
  • 19
    Kinjyo I, Hanada T, Inagaki-Ohara K et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002: 17: 583591.
  • 20
    Ilangumaran S, Ramanathan S, Rottapel R. Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 2004: 16: 351365.
  • 21
    Yoshimura A, Ohishi H M, Aki D, Hanada T. Regulation of TLR signaling and inflammation by SOCS family proteins. J Leukoc Biol 2004: 75: 422427.
  • 22
    Harrison C J, Jenski L, Voychehovski T, Bernstein D I. Modification of immunological responses and clinical disease during topical R-837 treatment of genital HSV-2 infection. Antiviral Res 1988: 10: 209223.
  • 23
    Harrison C J, Miller R L, Bernstein D I. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob Agents Chemother 1994: 38: 20592064.
  • 24
    Chen M, Griffith B P, Lucia H L, Hsiung G D. Efficacy of S26308 against guinea pig cytomegalovirus infection. Antimicrob Agents Chemother 1988: 32: 678683.
  • 25
    Steinmann A, Funk J O, Schuler G, Von Den D P. Topical imiquimod treatment of a cutaneous melanoma metastasis. J Am Acad Dermatol 2000: 43: 555556.
  • 26
    Sidky Y A, Borden E C, Weeks C E, Reiter M J, Hatcher J F, Bryan G T. Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res 1992: 52: 35283533.
  • 27
    Naylor M. Imiquimod and superficial skin cancers. J Drugs Dermatol 2005: 4: 598606.
  • 28
    McInturff J E, Modlin R L, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 2005: 125: 18.
  • 29
    Lysa B, Tartler U, Wolf R et al. Gene expression in actinic keratoses: pharmacological modulation by imiquimod. Br J Dermatol 2004: 151: 11501159.
  • 30
    Bos J D, Meinardi M M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 2000: 9: 165169.
  • 31
    Imbertson L M, Beaurline J M, Couture A M et al. Cytokine induction in hairless mouse and rat skin after topical application of the immune response modifiers imiquimod and S-28463. J Invest Dermatol 1998: 110: 734739.
  • 32
    Hengge U R, Ruzicka T. Topical immunomodulation in dermatology: potential of toll-like receptor agonists. Dermatol Surg 2004: 30: 11011112.
  • 33
    Gibson S J, Imbertson L M, Wagner T L et al. Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 1995: 15: 537545.
  • 34
    Megyeri K, Au W C, Rosztoczy I et al. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol Cell Biol 1995: 15: 22072218.
  • 35
    Tomai M A, Gibson S J, Imbertson L M et al. Immunomodulating and antiviral activities of the imidazoquinoline S-28463. Antiviral Res 1995: 28: 253264.
  • 36
    Testerman T L, Gerster J F, Imbertson L M et al. Cytokine induction by the immunomodulators imiquimod and S-27609. J Leukoc Biol 1995: 58: 365372.
  • 37
    Wagner T L, Horton V L, Carlson G L et al. Induction of cytokines in cynomolgus monkeys by the immune response modifiers, imiquimod, S-27609 and S-28463. Cytokine 1997: 9: 837845.
  • 38
    Weeks C E, Gibson S J. Induction of interferon and other cytokines by imiquimod and its hydroxylated metabolite R-842 in human blood cells in vitro. J Interferon Res 1994: 14: 8185.
  • 39
    Gorden K B, Gorski K S, Gibson S J et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 2005: 174: 12591268.
  • 40
    Kono T, Kondo S, Pastore S et al. Effects of a novel topical immunomodulator, imiquimod, on keratinocyte cytokine gene expression. Lymphokine Cytokine Res 1994: 13: 7176.
  • 41
    Kollisch G, Kalali B N, Voelcker V et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 2005: 114: 531541.
  • 42
    Shortman K, Liu Y J. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002: 2: 151161.
  • 43
    Colonna M, Trinchieri G, Liu Y J. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004: 5: 12191226.
  • 44
    Barchet W, Cella M, Colonna M. Plasmacytoid dendritic cells – virus experts of innate immunity. Semin Immunol 2005: 17: 253261.
  • 45
    Cella M, Jarrossay D, Facchetti F et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999: 5: 919923.
  • 46
    Kadowaki N, Ho S, Antonenko S et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001: 194: 863869.
  • 47
    Nakano H, Yanagita M, Gunn M D. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001: 194: 11711178.
  • 48
    Gibson S J, Lindh J M, Riter T R et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 2002: 218: 7486.
  • 49
    Diebold S S, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004: 303: 15291537.
  • 50
    Liu Y J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005: 23: 275306.
  • 51
    Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002: 3: 196200.
  • 52
    Palamara F, Meindl S, Holcmann M, Luhrs P, Stingl G, Sibilia M. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol 2004: 173: 30513061.
  • 53
    Urosevic M, Dummer R, Conrad C et al. Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst 2005: 97: 11431153.
  • 54
    Burns R P Jr, Ferbel B, Tomai M, Miller R, Gaspari A A. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans' cells. Clin Immunol 2000: 94: 1323.
  • 55
    Suzuki H, Wang B, Shivji G M et al. Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 2000: 114: 135141.
  • 56
    Gunzer M, Riemann H, Basoglu Y et al. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood 2005: 106: 24242432.
  • 57
    Vidal D, Matias-Guiu X, Alomar A. Efficacy of imiquimod for the expression of Bcl-2, Ki67, p53 and basal cell carcinoma apoptosis. Br J Dermatol 2004: 151: 656662.
  • 58
    Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol 2004: 50: 722733.
  • 59
    Korman N, Moy R, Ling M et al. Dosing with 5% imiquimod cream 3 times per week for the treatment of actinic keratosis: results of two phase 3, randomized, double-blind, parallel-group, vehicle-controlled trials. Arch Dermatol 2005: 141: 467473.
  • 60
    Levy O, Zarember K A, Roy R M, Cywes C, Godowski P J, Wessels M R. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol 2004: 173: 46274634.
  • 61
    Ahonen C L, Gibson S J, Smith R M et al. Dendritic cell maturation and subsequent enhanced T-cell stimulation induced with the novel synthetic immune response modifier R-848. Cell Immunol 1999: 197: 6272.
  • 62
    Fogel M, Long J A, Thompson P J, Upham J W. Dendritic cell maturation and IL-12 synthesis induced by the synthetic immune-response modifier S-28463. J Leukoc Biol 2002: 72: 932938.
  • 63
    Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005: 6: 769776.
  • 64
    Ahonen C L, Doxsee C L, McGurran S M et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 2004: 199: 775784.
  • 65
    Wagner T L, Ahonen C L, Couture A M et al. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell Immunol 1999: 191: 1019.
  • 66
    Caron G, Duluc D, Fremaux I et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol 2005: 175: 15511557.
  • 67
    Tousignant J D, Zhao H, Yew N S, Cheng S H, Eastman S J, Scheule R K. DNA sequences in cationic lipid: pDNA-mediated systemic toxicities. Hum Gene Ther 2003: 14: 203214.
  • 68
    Tomai M A, Imbertson L M, Stanczak T L, Tygrett L T, Waldschmidt T J. The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell Immunol 2000: 203: 5565.
  • 69
    Soulas P, Woods A, Jaulhac B et al. Autoantigen, innate immunity, and T cells cooperate to break B cell tolerance during bacterial infection. J Clin Invest 2005: 115: 22572267.
  • 70
    Bernasconi N L, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002: 298: 21992202.
  • 71
    Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002: 168: 45314537.
  • 72
    Bishop G A, Ramirez L M, Baccam M, Busch L K, Pederson L K, Tomai M A. The immune response modifier resiquimod mimics CD40-induced B cell activation. Cell Immunol 2001: 208: 917.
  • 73
    Bishop G A, Hsing Y, Hostager B S, Jalukar S V, Ramirez L M, Tomai M A. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J Immunol 2000: 165: 55525557.
  • 74
    Bekeredjian-Ding I B, Wagner M, Hornung V et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 2005: 174: 40434050.
  • 75
    Vasilakos J P, Smith R M, Gibson S J et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell Immunol 2000: 204: 6474.
  • 76
    Frotscher B, Anton K, Worm M. Inhibition of IgE production by the imidazoquinoline resiquimod in nonallergic and allergic donors. J Invest Dermatol 2002: 119: 10591064.
  • 77
    McArthur J C, Brew B J, Nath A. Neurological complications of HIV infection. Lancet Neurol 2005: 4: 543555.
  • 78
    Studahl M. Influenza virus and CNS manifestations. J Clin Virol 2003: 28: 225232.
  • 79
    Zhang Z, Trautmann K, Schluesener H J. Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists. J Neuroimmunol 2005: 164: 154160.
  • 80
    Schön M P, Wienrich B G, Drewniok C et al. Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol 2004: 122: 12661276.
  • 81
    Schön M, Bong A B, Drewniok C et al. Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 2003: 95: 11381149.
  • 82
    Barnetson R S, Satchell A, Zhuang L, Slade H B, Halliday G M. Imiquimod induced regression of clinically diagnosed superficial basal cell carcinoma is associated with early infiltration by CD4 T cells and dendritic cells. Clin Exp Dermatol 2004: 29: 639643.
  • 83
    Wolf I H, Cerroni L, Kodama K, Kerl H. Treatment of lentigo maligna (melanoma in situ) with the immune response modifier imiquimod. Arch Dermatol 2005: 141: 510514.
  • 84
    Borucki U, Metze D. Topical treatment of lentigo maligna melanoma with imiquimod 5% cream. Dermatology 2003: 207: 326328.
  • 85
    Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R. Mechanisms underlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch Dermatol 2003: 139: 13251332.
  • 86
    Gunzer M, Grabbe S. Dendritic cells in cancer immunotherapy. Crit Rev Immunol 2001: 21: 133145.
  • 87
    Gunzer M, Janich S, Varga G, Grabbe S. Dendritic cells and tumor immunity. Semin Immunol 2001: 13: 291302.
  • 88
    Halliday G M, Patel A, Hunt M J, Tefany F J, Barnetson R S. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg 1995: 19: 352358.
  • 89
    Schön M P, Schön M. Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis 2004: 9: 291298.