SEARCH

SEARCH BY CITATION

Climatic variation associated with the North Atlantic Oscillation (NAO) influences terrestrial and marine ecosystems, but its effects on river and stream ecosystems are less well known. The influence of the NAO on the growth of stream insects was examined using long-term empirical data on the sizes of mayfly and stonefly nymphs and on water temperature data. Models of egg development and nymphal growth in relation to temperature were used to predict the effect of the NAO on phenology. The study was based in two upland streams in mid-Wales UK that varied in the extent of plantation forestry in their catchments. Winter stream temperatures at both sites were positively related to the winter NAO index, being warmer in positive phases and colder in negative phases. The observed mean size and the simulated developmental period of mayfly nymphs were significantly related to the winter NAO index, with nymphs growing faster in positive phases of the NAO, but the growth of stonefly nymphs was not related to the NAO. This may have been due to the semivoltine stonefly lifecycle, but stonefly nymph growth is also generally less dependent on temperature. There were significant differences in growth rates of both species between streams, with nymphs growing more slowly in the forested stream that was consistently cooler than the open stream. Predicted emergence dates for adult mayflies varied by nearly two months between years, depending on the phase of the NAO. Variation in growth and phenology of stream insects associated with the NAO may influence temporal fluctuations in the composition and dynamics of stream communities.