Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations?


  • M. Alex Smith,

  • David M. Green

M. A. Smith (alex.smith@mail.mcgill.ca) and D. M. Green, Redpath Museum, McGill Univ., 859 Sherbrooke St. West, Montreal, QC, Canada H3A 2K6, (present address of M. A. S.: Dept of Zoology, Univ. of Guelph, Guelph, ON, Canada NIG 2W1)..


Amphibians are frequently characterized as having limited dispersal abilities, strong site fidelity and spatially disjunct breeding habitat. As such, pond-breeding species are often alleged to form metapopulations. Amphibian species worldwide appear to be suffering population level declines caused, at least in part, by the degradation and fragmentation of habitat and the intervening areas between habitat patches. If the simplification of amphibians occupying metapopulations is accurate, then a regionally based conservation strategy, informed by metapopulation theory, is a powerful tool to estimate the isolation and extinction risk of ponds or populations. However, to date no attempt to assess the class-wide generalization of amphibian populations as metapopulations has been made. We reviewed the literature on amphibians as metapopulations (53 journal articles or theses) and amphibian dispersal (166 journal articles or theses for 53 anuran species and 37 salamander species) to evaluate whether the conditions for metapopulation structure had been tested, whether pond isolation was based only on the assumption of limited dispersal, and whether amphibian dispersal was uniformly limited. We found that in the majority of cases (74%) the assumptions of the metapopulation paradigm were not tested. Breeding patch isolation via limited dispersal and/or strong site fidelity was the most frequently implicated or tested metapopulation condition, however we found strong evidence that amphibian dispersal is not as uniformly limited as is often thought. The frequency distribution of maximum movements for anurans and salamanders was well described by an inverse power law. This relationship predicts that distances beneath 11–13 and 8–9 km, respectively, are in a range that they may receive one emigrating individual. Populations isolated by distances approaching this range are perhaps more likely to exhibit metapopulation structure than less isolated populations. Those studies that covered larger areas also tended to report longer maximum movement distances – a pattern with implications for the design of mark-recapture studies. Caution should be exercised in the application of the metapopulation approach to amphibian population conservation. Some amphibian populations are structured as metapopulations – but not all.