SEARCH

SEARCH BY CITATION

References

  • Åbjörnsson, K. et al. 2004. Responses of prey from habitats with different predator regimes: local adaptation and heritability. Ecology 85: 18591866.
  • Aickin, M. and Gensler, H.. 1996. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am. J. Public Health 86: 726728.
  • Anon., . 2001. S-Plus 6 for Windows guide to statistics. Vol. 2. Insightful Corporation.
  • Anon., . 2004. 2004 IUCN Red List of Threatened Species IUCN, Gland, Switzerland, accessed online 11 April 2006 at <http://www.iucnredlist.org>.
  • Araújo, M. B. et al. 2005. Validation of species-climate impact models under climate change. Global Change Biol. 11: 15041513.
  • Augustin, N. H. et al. 1996. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33: 339347.
  • Austin, M. P.. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Modell. 157: 101118.
  • Balmford, A. et al. 2002. Economic reasons for conserving wild nature. Science 297: 950953.
  • Best, L. B. and Stauffer, D. F.. 1986. Factors confounding evaluation of bird-habitat relationships. – In: Verner, J. et al (eds), Wildlife 2000: modeling habitat relationships of terrestrial vertebrates. The Univ. of Wisconsin Press, pp. 209216.
  • Boone, R. B. and Krohn, W. B.. 1999. Modeling the occurrence of bird species: are the errors predictable?. Ecol. Appl. 9: 835848.
  • Brotons, L. et al. 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27: 437448.
  • – In: Brown, L. H. et al (eds), The birds of Africa. Academic Press 19822004..
  • Burns, C. E. et al. 2003. Global climate change and mammalian species diversity in US national parks. Proc. Nat. Acad. Sci. USA. 100: 1147411477.
  • Carswell, M. et al. 2005. Bird atlas of Uganda. British Ornithologists’ Club.
  • Colwell, R. K. and Futuyma, D. J.. 1971. On the measurement of niche breadth and overlap. Ecology 52: 567576.
  • Corsi, F. et al. 1999. A large-scale model of wolf distribution in Italy for conservation planning. Conserv. Biol. 13: 150159.
  • Dean, W. R. J.. 1997. The distribution and biology of nomadic birds in the Karoo, South Africa. J. Biogeogr. 24: 769779.
  • Dean, W. R. J.. 2000. The birds of Angola: an annotated checklist. British Ornithologists’ Union.
  • De Klerk, H. M. et al. 2002. Biogeographical patterns of endemic terrestrial Afrotropical birds. Div. Distrib. 8: 147162.
  • Diekotter, T. et al. 2006. Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodiv. Conserv. 15: 5768.
  • Dowsett, R. J. and Forbes-Watson, A. D.. 1993. Checklist of birds of the Afrotropical and Malagasy regions. Tauraco Press.
  • – In: Dunning, J. B. (ed.), CRC handbook of avian body masses. CRC Press 1993..
  • Elith, J. and Burgman, M.. 2002. Predictions and their validation: rare plants in the central highlands, Victoria, Australia. – In: Scott, J. M. et al (eds), Predicting species occurrences – issues of accuracy and scale. Island Press, pp. 303313.
  • Elith, J. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.
  • Engler, R. et al. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41: 263274.
  • Fielding, A. H. and Haworth, P. F.. 1995. Testing the generality of bird-habitat models. Conserv. Biol. 9: 14661481.
  • Fielding, A. H. and Bell, J. F.. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 3849.
  • Garrison, B. A. and Lupo, T.. 2002. Accuracy of bird range maps based on habitat maps and habitat relationship models. – In: Scott, J. M. et al (eds), Predicting species occurrences – issues of accuracy and scale. Island Press, pp. 367375.
  • Gibson, L. A. et al. 2004. Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach. J. Appl. Ecol. 41: 213223.
  • – In: Ginn, P. J. et al (eds), The complete book of southern African birds. Struik Winchester 1989..
  • Gioia, P. and Pigott, J. P.. 2000. Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of south-western Australia. J. Biogeogr. 27: 10651078.
  • Girard, M.-C. and Girard, C.. 2003. Processing of remote sensing data. A. A. Balkema Publ.
  • Goetz, S. J. et al. 2000. Advances in satellite remote sensing of environmental variables for epidemiological applications. – In: Hay, S. I. et al (eds), Remote sensing and geographical information systems in epidemiology. Academic Press, pp. 289307.
  • Grinnell, J.. 1917. Field tests of theories concerning distributional control. Am. Nat. 51: 115128.
  • Guisan, A. and Zimmermann, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147186.
  • Guisan, A. and Thuiller, W.. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 9931009.
  • Guralnick, R.. 2006. The legacy of past climate and landscape change on species’ current experienced climate and elevation ranges across latitude: a multispecies study utilizing mammals in western North America. Global Ecol. Biogeogr. 15: 505518.
  • – In: Harrison, J. A. et al (eds), The atlas of southern African birds. Birdlife South Africa 1997..
  • Hay, S. I.. 2000. An overview of remote sensing and geodesy for epidemiology and public health applications. – In: Hay, S. I. et al (eds), Remote sensing and geographical information systems in epidemiology. Academic Press, pp. 135.
  • Hepinstall, J. A. et al. 2002. Effects of niche width on the performance and agreement of avian habitat models. – In: Scott, J. M. et al (eds), Predicting species occurrences – issues of accuracy and scale. Island Press, pp. 593606.
  • Hoeting, J. A. et al. 2000. An improved model for spatially correlated binary responses. J. Agricult. Biol. Environ. Stat. 5: 102114.
  • Hoeting, J. A. et al. 2006. Model selection for geostatistical models. Ecol. Appl. 16: 8798.
  • Holt, R. D.. 2003. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 5: 159178.
  • Huntley, B. et al. 2004. The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol. Lett. 7: 417426.
  • Hutchinson, G. E.. 1957. Concluding remarks. Cold Spring Harb. Symp. 22: 415427.
  • Hutchinson, G. E.. 1959. Homage to Santa Rosalia: or why are there so many kind of animals?. Am. Nat. 93: 145159.
  • Joachim, J. et al. 1998. Évaluation par télédétection des biotopes à gélinotte de bois (Bonasa bonasia) dans le Parc national des Cévennes. Gibier Faune Sauvage 15: 3145.
  • Kadmon, R. et al. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13: 853867.
  • Karl, J. W. et al. 2002. Species commonness and the accuracy of habitat-relationship models. – In: Scott, J. M. et al (eds), Predicting species occurrences – issues of accuracy and scale. Island Press, pp. 573580.
  • Keitt, T. H. et al. 2002. Accounting for spatial pattern when modeling organism- environment interactions. Ecography 25: 616625.
  • Knapp, R. A. et al. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol. Appl. 13: 10691082.
  • Knick, S. T. and Rotenberry, J. T.. 2000. Ghosts of habitats past: contribution of landscape change to current habitats used by shrubland birds. Ecology 81: 220227.
  • Leathwick, J. R. and Austin, M. P.. 2001. Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology 82: 25602573.
  • Legendre, P. and Legendre, L.. 1998. Numerical ecology, 2nd English ed. Elsevier.
  • Lepage, D.. 2005. Avibase – the world bird database Bird Studies Canada and Birdlife International, accessed online 2 March 2005 at <http://www.bsc-eoc.org/avibase/avibase.jsp>.
  • Lewis, A. and Pomeroy, D. E.. 1989. A bird atlas of Kenya. Balkema.
  • Manel, S. et al. 2000. Testing large-scale hypotheses using surveys: the effects of land use on the habitats, invertebrates and birds of Himalayan rivers. J. Appl. Ecol. 37: 756770.
  • McPherson, J. M. et al. 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?. J. Appl. Ecol. 41: 811823.
  • Michalak, P. et al. 2001. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon”, Israel. Proc. Nat. Acad. Sci. USA 98: 1319513200.
  • Mitchell, M. S. et al. 2001. Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecol. Appl. 11: 16921708.
  • Neave, H. M. et al. 1996. Biological inventory for conservation evaluation: 3. Relationships between birds, vegetation and environmental attributes in southern Australia. For. Ecol. Manage. 85: 197218.
  • Osborne, P. E. and Suarez-Seoane, S.. 2002. Should data be partitioned spatially before building large-scale distribution models?. Ecol. Modell. 157: 249259.
  • Parker, V.. 1994. Swaziland bird atlas, 1985–1991. Websters.
  • Parker, V.. 1999. The atlas of birds of Sul do Save, southern Mozambique. Avian Demography Unit and the Endangered Wildlife Trust.
  • Pearce, J. and Ferrier, S.. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133: 225245.
  • Pearce, J. et al. 2001. An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J. Environ. Manage. 62: 171184.
  • Perneger, T. V.. 1998. What's wrong with Bonferroni adjustments. Brit. Med. J. 316: 12361238.
  • Peterson, A. T. and Holt, R. D.. 2003. Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol. Lett. 6: 774782.
  • Pulliam, H. R.. 2000. On the relationship between niche and distribution. Ecol. Lett. 3: 349361.
  • Real, R. et al. 2006. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13: 237245.
  • Rogers, D. J. et al. 1996. Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann. Trop. Med. Parasitol. 90: 225241.
  • Sakamoto, Y. et al. 1986. Akaike information criterion statistics. D. Reidel Publ. Company.
  • Scribner, K. T. et al. 2001. Environmental correlates of toad abundance and population genetic diversity. Biol. Conserv. 98: 201210.
  • Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 15551568.
  • Şekercioğlu, Ç. H. et al. 2004. Ecosystem consequences of bird declines. Proc. Nat. Acad. Sci. USA 101: 1804218047.
  • Sibley, C. G. and Monroe, B. L.. 1990. Distribution and taxonomy of the birds of the world. Yale Univ. Press.
  • Sibley, C. G. and Monroe, B. L.. 1993. A supplement to the distribution and taxonomy of birds of the world. Yale Univ. Press.
  • Stockwell, D. R. B. and Peterson, A. T.. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148: 113.
  • Suarez-Seoane, S. et al. 2002. Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. J. Appl. Ecol. 39: 755771.
  • Thuiller, W.. 2003. BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Global. Change Biol. 9: 13531362.
  • Thuiller, W. et al. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 16881699.
  • Thuiller, W. et al. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global. Change Biol. 11: 22342250.
  • Vaughan, I. P. and Ormerod, S. J.. 2003. Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv. Biol. 17: 16011611.
  • Verbyla, D. L. and Litvaitis, J. A.. 1989. Resampling methods for evaluating classification accuracy of wildlife habitat models. Environ. Manage. 13: 783787.
  • Walther, B. A. et al. 2004. Known and predicted African winter distributions and habitat use of the endangered Basra reed warbler (Acrocephalus griseldis) and the near-threatened cinereous bunting (Emberiza cineracea). J. Ornithol. 145: 287299.
  • Wiens, J. J. and Graham, C. H.. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36: 519539.