• adaptation;
  • behaviour;
  • body size;
  • brain;
  • chromosomes;
  • development;
  • energetics;
  • Eutfieria;
  • evolution;
  • life history;
  • longevity;
  • Marsupialia;
  • play;
  • reproduction

Palaeontologically recognizable eutherians originated no later than the Early Cretaceous in warm, probably moderately seasonal climates. Immediate ancestors were small, sharing many anatomical, physiological and reproductive features with small modern marsupials. Development of characteristically eutherian features involved interactions of body size, rates of metabolism, energetic costs of reproduction, anatomical/physiological processes of development and effects of each upon rates of population growth. In contrast to eutherians, marsupials have a narrow range of basal metabolic rates (lacking high rates), and show no direct links between rate of energy expenditure and gestation period, postnatal growth rate, fecundity or reproductive potential. Biological implications of this contrast are most pronounced at small body sizes. When resources are abundant, the relatively higher growth rates and earlier maturation of small eutherians (particularly those with high rates of metabolism) can lead to rapid population growth; among most marsupials, however, both pre- and postnatal constraints apparently preclude attainment of such high rates of reproduction. Also, only eutherians among the amniotes combine intimacy of placentation with prolonged active intra-uterine morphogenesis. Once established, that combination permitted (and even favoured) increases in diversity of adaptation in such disparate aspects as elevated metabolic rate, increased pre- and postnatal growth rates, increased encephalization, greater longevity, increased gregariousness, greater karyotypic flexibility, and augmented variability in adult morphology. However, all such boosts in diversity were probably secondary and dependent upon prior innovation of trophoblastic/uterine wall immunological protection of foetal tissues during prolonged intra-uterine development. Increased metabolic rates followed thereafter, with synergisms that may have speeded evolution among early eutherians. Eutherian-style trophoblast probably originated in the Mesozoic. Dependent adaptations, variably expressed, evolved later in sundry descendant lineages. Reproductive differences between marsupials and eutherians are not biologically trivial; to the contrary, breakthroughs among eutherians assured their dominance: (1) in high intensity food habits; (2) at small body masses; and (3) in very cold climates.