• coloration;
  • femoral pores;
  • natural selection;
  • Psammodromus algirus;
  • sexual selection;
  • sprint speed

Intraspecific variation in morphology has often been related to fitness differences through its effects on performance. In lizards, variation in hind limb length can be shaped by natural selection for increased locomotor performance, sexual selection on the number or size of femoral pores involved in chemical signalling, or both. Here, we analyse the selective forces involved in sexual dimorphism and differences in hind limb length between two populations of Psammodromus algirus living at different elevation. Males were more robust and had longer hind limbs and limb segments than females, and low-elevation lizards had longer limbs than high-elevation lizards. However, differences in locomotor performance were small and non-significant, making natural selection for faster runs an unlikely explanation for the observed pattern. On the other hand, males had more femoral pores than females, and lizards had more pores at lower elevation, although the difference was significant only for males (which invest more in chemical signalling). In males, the number of pores, which remains constant along a lizard's life, was not correlated with hind limb length. However, femur length was positively correlated with mean pore size, allowing low-elevation males to have larger than expected pores, which could increase the effectiveness with which they spread their signals in a dry and warm habitat where chemicals become volatile rapidly. Also, saturation of the sexual coloration of the head was higher for low-elevation males, suggesting that sexual selection pressures may be more intense. Overall, our results indicate that sexual selection plays a significant role in shaping intraspecific variation in hind limb length. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 318–329.