Identification of cryptic species of Miniopterus bats (Chiroptera: Miniopteridae) from Madagascar and the Comoros using bioacoustics overlaid on molecular genetic and morphological characters

Authors


Abstract

The number of Miniopterus bat species on Madagascar and the nearby Comoros islands (Malagasy region) has risen from four to 11. These recently described cryptic taxa have been differentiated primarily based on molecular markers and associated a posteriori morphological characters that corroborate the different clades. Members of this Old World genus are notably conservative in morphology across their range. Several sites on Madagascar hold up to four small-bodied taxa of this genus that are morphologically similar to one another, although they can be distinguished based on the tragus, an ear structure associated with echolocation. Miniopterus often emit species-specific calls. In the present study, we analyze the bioacoustics of the 11 species of Miniopterus currently recognized from the Malagasy region, with an initial identification of the 87 recorded and collected individuals based on molecular markers and certain morphological characters. In most cases, bioacoustic parameters differentiate species and have taxonomic utility. Miniopterus griveaudi populations, which occur on three islands (Madagascar, Anjouan, and Grande Comore), showed no significant differences in peak echolocation frequencies. After running a discriminant function analysis based on five bioacoustic parameters, some mismatched assignments of Malagasy species were found, which include allopatric sister-taxa and sympatric, phylogenetically not closely-related species of similar body size. Because the peak echolocation frequencies of two species (Miniopterus sororculus and Miniopterus aelleni) were independent of body size, they were acoustically distinguishable from cryptic sympatric congeners. The small variation around the allometric relationship between body size and peak echolocation frequency of Malagasy Miniopterus species suggests that intraspecific communication rather than competition or prey detection may be the driver for the acoustic divergence of these two species. Our well-defined echolocation data allow detailed ecological work to commence aiming to test predictions about the relative roles of competition, prey availability, and social communication on the evolution of echolocation in Malagasy Miniopterus species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 284–302.

Ancillary