Get access

Radial secondary growth and formation of successive cambia and their products in Ipomoea hederifolia L. (Convolvulaceae)




Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de-differentiation, and re-differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158, 30–40.