Get access

Global phylogeography in Sanionia uncinata (Amblystegiaceae: Bryophyta)

Authors

  • LARS HEDENÄS

    Corresponding author
    1. Department of Cryptogamic Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
      E-mail: lars.hedenas@nrm.se
    Search for more papers by this author

E-mail: lars.hedenas@nrm.se

Abstract

Global phylogeographic patterns in Sanionia uncinata are addressed based on information in internal transcribed spacer (ITS) (214 specimens) and the plastid markers trnL-trnF (221) and rpl16 (217). ITS suggests a monophyletic Sanionia and a paraphyletic S. uncinata; this was neither supported nor rejected by plastid data. Northern or Eastern Eurasia and Alaska appear important in the early evolution of Sanionia and some populations dispersed into the Southern Hemisphere relatively early. Some haplotypes or groups of haplotypes are morphologically and ecologically distinct, biologically meaningful units that correspond with S. orthothecioides, S. symmetrica and S. georgicouncinata s.l. The latter includes two species that are indistinguishable by morphology, S. georgicouncinata s.s. (Southern Hemisphere) and S. nivalis (Northern Hemisphere). Tropical African and South American S. uncinata populations have separate origins and the Southern Hemisphere was colonized at least twice. In the northern circum-Arctic region, the haplotype composition differs between the North Atlantic and Beringian areas. Eastern Eurasia has a higher S. uncinata haplotype diversity than other Holarctic regions, implying less devastating effects of recurrent glacial periods. For Eastern and Western Eurasia, North America and the Southern Hemisphere, most of the haplotype variation was found within the regions, but 14–18% can be referred to among region variation. Plastid haplotype diversity was lower in the Southern Hemisphere than in the Arctic to subarctic, possibly attributable to founder effects. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168, 19–42.

Get access to the full text of this article

Ancillary