SEARCH

SEARCH BY CITATION

Keywords:

  • lens key characters;
  • phylogenetic tree;
  • wood anatomy

Abstract

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

In this article, a general description of the microscopic wood anatomy of Annonaceae is given. We provide a description of the wood anatomical features of the family and of all subfamilies and tribes, all from material in the Utrecht Wood collection. Hand-lens images can be an important help in identification, not only at the family level, but also at the level of genera or below, notwithstanding the fact that the number of characters that can be easily observed in end-grain photographs is restricted. The differences are often slight and difficult to summarize in a few words, making illustrations an indispensable tool. Therefore, we provide end-grain photographs of cross-sections of wood of 66 genera and > 90 species of Annonaceae. The variation seen in lens key characters is discussed against the framework of the current phylogenetic tree of the family. Additional remarks on microscopic features are given when appropriate. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169, 135–189.


INTRODUCTION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

Annonaceae as a family is easily recognized not only by its flowers, fruit and vegetative habit, but also by the characteristic wood. The vessels are diffusely arranged, solitary and in short radial multiples. Perforation plates are simple and the alternate intervessel pits are mostly minute or small. Two features of the xylem structure stand out in particular: first, the broad and high multiseriate rays and, second, the numerous narrow parenchyma bands that are visible in transverse sections as more or less continuous tangential lines, perpendicular to the rays. The resulting cobweb- to ladder-like (or reticulate) appearance in cross-sections, often visible even to the naked eye, is found in all Annonaceae, even in the first-formed xylem (Fig. 40A). Even the deviating genus Tetrameranthus R.E.Fr., with tetramerous flowers and spirally (rather than distichously) placed leaves, shows this striking structure (Ter Welle, 1985).

The same can be said of species growing in moderate climates or of those with a climbing habit. Although taxa belonging to these categories often deviate in certain characters, the general annonaceous structure is always present.

There is general consensus that Annonaceae forms a natural group, and this is supported by the high homogeneity in wood structure. Various authors over the years have arrived at this conclusion: for example, Solereder (1899, 1908), Moll & Janssonius (1906), Hess (1946), Metcalfe & Chalk (1950), Vander Wijk (1950), Ingle & Dadswell (1953), Vander Wijk & Canright (1956), Gottwald (1977), Ter Welle (1984, 1998) and Metcalfe (1987).

In the APG III classification (APG III, 2009; Stevens, 2001 onwards; http://www.mobot.org/MOBOT/research/APweb/; date of access 25 Sep 2011) Annonaceae is placed in the order Magnoliales with Degeneriaceae, Eupomatiaceae, Himantandraceae, Magnoliaceae and Myristicaceae (Sauquet et al., 2003).With the exception of Himantandraceae, these families show scalariform perforation plates (Degeneriaceae, Eupomatiaceae, Magnoliaceae) and/or reticulate to scalariform intervessel pits (Degeneriaceae, Eupomatiaceae, Magnoliaceae, Myristicaceae). Himantandraceae differs, among other characters, in its longer radial rows of vessels, the continuous parenchyma bands and the presence of prismatic crystals. In none of the above-mentioned families, however, is the reticulate parenchyma pattern, characteristic for Annonaceae, found.

A wealth of information is available from North Carolina State University (NCSU; Raleigh, NC, USA) on the website InsideWood (http://insidewood.lib.ncsu.edu/search/). This website includes microscopic data, often illustrated, on the wood anatomy of (currently) > 2500 genera belonging to nearly 300 families, and it is a valuable tool for the identification of wood. From a search of the InsideWood database applying the International Association of Wood Anatomists (IAWA) wood characters, the combination of wide and high rays (characters 98, 102) and seemingly reticulate parenchyma (characters 86, 87, 88) results in six families. Huaceae, Icacinaceae and Loganiaceae are represented by only one species each. The other three families are represented by more species: Annonaceae (14), Lecythidaceae (7) and Malvaceae (5). In the APG III classification, three of these families (Icacinaceae, Lecythidaceae and Loganiaceae) are found in the asterids, two families (Malvaceae and Huaceae) in the rosids, and Annonaceae is the only one placed in the magnoliids.

When six more features are added in the database search based on our description of Annonaceae, referring to vessel distribution, perforation plates and pits of vessels, rays and fibres (IAWA characters 5, 13, 22, 25, 30, 61) and no mismatch is allowed, a search produces seven hits, four of which are for Annonaceae. This low number is caused by the variation found in most wood anatomical features. When one mismatch is allowed, in order to address this problem, the number of hits for Annonaceae increases greatly (43). Twelve other families, all found in the rosids or asterids, are far less often retrieved, Malvaceae being second best with 14 hits. Annonaceae remains the sole representative of the magnoliids.

Given the wood anatomical differences mentioned earlier, it is not surprising that the families considered to be most closely related to Annonaceae were not found when scanning the InsideWood database (only Degeneriaceae is not represented in the database).

Although wood anatomical characters are usually variable at the familial level, the character combination exhibited by Annonaceae is more or less homogeneous. Thus, the suite of wood anatomical characters discussed above renders taxa belonging to this large family easily recognizable and surprisingly distinct from other Magnoliales.

In this article, a general description of the microscopic wood anatomy of the family is given on the basis of data from the literature and personal observations. A few microphotographs are added. For further illustrations of microscopic features, we refer to the website Insidewood (2004 onwards), which includes photographs of transverse and tangential sections of c. 35, mainly Neotropical, genera of the Utrecht Wood collection.

In addition to the family description, we provide a survey of end-grain photographs of 66 genera and > 90 species of Annonaceae, all from material in the Utrecht Wood collection, which at present is housed at the Netherlands Centre for Biodiversity Naturalis, Leiden, the Netherlands.

Hand-lens images have somewhat suffered from neglect in past decades, most papers showing microphotographs only. The usefulness and advantages of hand-lens photographs, especially end-grain photographs, are discussed by Westra & Koek-Noorman (2004) in their recent wood atlas of Euphorbiaceae s.l. Good examples of atlases of wood photographs through a hand lens, covering a large number of families, are found in Pfeiffer (1926), Lindeman & Mennega (1963) and Ilic (1991).

A preliminary survey of mainly end-grain photographs from a selection of Annonaceae was presented in an informal paper by Westra & Koek-Noorman (2003). They illustrated that, in certain cases, despite the homogeneity within the family, differences observed with a good hand lens can be an important help in identification, particularly at the level of genera or below.

The advantages of the use of a hand lens are obvious: ease, speed and the possibility to observe a relatively large area at a single glance, although the number of characters that can be easily observed in end-grain photographs is restricted. The differences are often slight and difficult to summarize in a few words, and illustrations are indispensable.

The variation seen in lens key characters is discussed against the framework of phylogenetic relationships in the family (Richardson et al., 2004; Chatrou et al., 2012). To facilitate the comparison, the photographs are arranged according to the clades in figure 1 of Chatrou et al., 2012. Additional remarks on microscopic features are given when appropriate.

MATERIAL AND METHODS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

Small blocks that had previously been cut to size for microtome sectioning were used for photography. The flat surface left after the cutting of microtome slices was photographed using a Zeiss Luminar 40-mm f/4.5 macro-objective (stopped down ½ stop) on Kodachrome 25 or 64 film. All objects were photographed at a standard reproduction ratio of 5 : 1, as in a previous survey of euphorbiaceous woods (Westra & Koek-Noorman, 2004). The resulting image on the 35-mm frame then corresponds to a rectangle of ± 7.0 × 4.5 mm2 on the object. In a few cases, an additional photograph was taken at a reproduction ratio of 10 : 1 using a Zeiss Luminar 25-mm f/3.5 objective (also stopped down ½ stop), whenever desirable in a fine grain wood. From the original colour slides, digital scans were made for further processing.

Most figures present about half of the full macro-image, showing a rectangle of c. 4.0 × 3.0 mm2 except for Figs. 2B, 11F, and 25F (2.0 × 1.5 mm2) In some cases, two photographs of different samples are selected, whenever intraspecific variation made this necessary or desirable. All photographs are cross-sections, and the scale bar equals 500 µm, unless indicated otherwise. For a few species, photographs of tangential or radial sections are included. A few microphotographs are included as an illustration of some anatomical features.

Generic names follow the latest taxonomic insights as compiled by Rainer & Chatrou (2006) and Erkens, Mennega & Westra (2012). An alphabetical list of taxa studied, including all author names, is given in Appendix 1.

RESULTS AND DISCUSSION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

Microscopic wood anatomy of Annonaceae

The most recent family treatment of the wood anatomy was published by Metcalfe (1987). This elaborate description was based in part on old literature, and the nomenclature in this publication is to some extent out of date. However, our findings still largely confirm Metcalfe's (1987) description. Here, we present a concise family description, based mainly on our own observations and wood anatomical descriptions forming part of recent taxonomic revisions.

The data presented cover only a part of the family. However, in view of the great homogeneity found so far and the agreement with Metcalfe's (1987) publication, we are convinced that the inclusion of data from more material would not change the description considerably. It should be noted that names occurring in a description, whether as illustrations of features or as exceptions, are intended as examples, and do not represent an exhaustive enumeration.

Despite the homogeneity of annonaceous wood, the general appearance as described in the Introduction may sometimes not be obvious, notably in climbing species and also in the one temperate species that we studied. In climbing species, adaptation is effected through enlargement of the vessel diameter. In Annona haematantha Miq. (Fig. 16E) and Guatteria scandens Ducke (Fig. 35D) (both New World), the transition is more or less gradual, whereas, in some African examples, it is much more abrupt, e.g. in Toussaintia hallei Le Thomas (Fig. 13B) and Friesodielsia montana (Engl. & Diels) Steenis (Fig. 12B). It should be noted that tangential parenchyma bands tend to become indistinct in liana wood.

Asimina triloba (L.) Dunal (Fig. 19C), found in the temperate USA and able to withstand cold winters, shows marked ring porous wood in growth rings, and parenchyma bands appear to have vanished here altogether. Their presence can only be detected under high magnification using a microscope.

In the great majority of species, growth rings are absent, or present merely as more or less distinct zones indicated by a change in fibre wall thickness, in the number of parenchyma bands and/or the vessel pattern. This pattern is visible in, among others, Annona annonoides (R.E.Fr.) Maas & Westra (Fig. 14E) and Annona edulis (Triana & Planch.) H.Rainer (Fig. 15E).

Vessels are solitary and in short radial multiples of two to four (five), rarely more. The percentage of solitary vessels is between 10 and 50%. Deviations from the common pattern include a predominance of solitary vessels (Guatteria Ruiz & Pav.) or radial multiples and clusters consisting of up to six (eight) vessels (Duguetia A.St.-Hil. p.p., Malmea R.E.Fr.). The mean vessel diameter is mostly from c. 50 to > 200 µm. Lower or higher mean sizes occur in individual species in several genera.

Mean vessel number is between 10 and 40 per mm2, but sometimes > 50 per mm2, e.g. in Fitzalania F.Muell., Sapranthus Seem. and Malmea R.E.Fr. Perforations are simple. Intervessel pits are mostly 2–3(–5) µm, rarely up to 9 µm (Annona). Vessel-ray pitting and vessel-parenchyma pitting are comparable, but pits are sometimes slightly larger than intervessel pits.

Parenchyma occurs in one- or two- (three-) cell wide tangential bands, rarely wider, consisting of two- to eight-celled strands. The number of parenchyma bands is < 10–20 per millimetre. Paratracheal parenchyma is absent or present as scanty cells, sometimes as incomplete rings to rarely vasicentric (Fissistigma Griff., Guatteria, Tetrameranthus). Strands are of four to eight cells.

Rays consist of narrow procumbent cells, often mingled with higher procumbent to square cells. Uniseriate rays are scanty, rarely absent, rarely more frequent (Fitzalania). Multiseriates are mostly four to eight cells wide, but rays > 10 cells wide are often present. The height is nearly always > 1000 µm, sometimes > 7000 µm. The width is from < 150 µm to ≤ 300 µm, with two (three)–10 cells, occasionally with long uniseriate margins.

Fibres are thin to thick, because of the variation in wall thickness and fibre diameter. Pits are mostly small, simple or with narrow borders, numerous on radial and tangential walls, rarely distinctly bordered, rarely scanty on tangential walls.

Oil cells are observed in the rays of several genera. Their size varies from more or less equal to that of the other ray cells and hardly distinguishable, to more than twice the normal ray cells (Duguetia). They may vary from scanty to numerous. Other authors have reported them as present in rays or parenchyma in the following genera: Cananga (DC.) Hook.f. & Thomson, Cleistopholis Pierre ex Engl., Cyathocalyx Champ. ex Hook.f. & Thomson, Cymbopetalum Benth., Diclinanona Diels, Duguetia A.St.-Hil., Guatteria Ruiz & Pav., Hornschuchia Nees, Mezzettia Becc., Monodora Dunal, Xylopia L.

Crystals are not common, but have been reported as occurring in ray cells as small oblong, square or round crystals [Fusaea (Baill.) Saff.] or as druses (Anaxagorea A.St.-Hil.). In many other genera, they are present incidentally, mainly in ray cells.

Recognition of genera

Wood characters that may be useful for identification purposes in Annonaceae are the arrangement, diameter and number of vessels, size of intervessel pits, width, height and number of multiseriate rays (Fig. 40C–F), presence or absence of crystals (Fig. 40E, F) and oil cells (Fig. 40C), presence of vasicentric parenchyma (Fig. 40D), and number of parenchyma bands per millimetre.

Only a few genera can be recognized on the basis of one character state or a combination of character states. All studied specimens of Anaxagorea have small druses in the ray cells (although sometimes sparse, and not visible with a hand lens; Fig. 40F). Paratracheal parenchyma cells can be found in several genera, but all specimens of the large genus Guatteria (with the exception of Ganomala R.E.Fr.), including the former small genera Guatteriella R.E.Fr., Guatteriopsis R.E.Fr. and Heteropetalum Benth., have paratracheal parenchyma as narrow vasicentric rings around all vessels (Figs 32A–36A, 40D). In Fusaea, small rhombic crystals can be observed in the ray cells (Fig. 40E).

For most genera, however, it is not possible, or hardly so, to find a discriminating group of characters. Although small genera may be rather homogeneous, most large genera show as much variation in wood character states as the family as a whole. An example is Annona L. (Figs 14E–18E).

When only end-grain observations are available, the number of characters useful for identification is even more limited. The most important characters here, often in combination of character states, are the following: arrangement, diameter and frequency of vessels, width of multiseriate rays and number of parenchyma bands per millimetre.

Comparing wood anatomy and phylogenetic relationships

As a result of the random distribution of wood anatomical characters in the family, the plotting of lens key characters on a phylogenetic tree (as in Chatrou et al., 2012) does not reveal significant differences between the clades. Nevertheless, we have arranged the photographs according to the clades that are recognized as subfamilies and tribes in Chatrou et al. (2012). In this way, we show cases of closely related genera that can be distinguished on the basis of wood anatomy, such as the Sapranthus alliance (Ter Welle & Van Rooden, 1982) and the Malmea alliance (Ter Welle, 1998). Greenwayodendron oliveri (Engl.) Verdc. (Fig. 27C) and Monanthotaxis parvifolia (Oliv.) Verdc. (Fig. 3F) are incorrectly placed, because previous identifications of the wood samples have been rectified recently, which made placing the photographs in the appropriate tribes impossible.

Malmeoideae

The two major clades of Annonaceae, together containing > 95% of species diversity, are Malmeoideae and Annonoideae (Richardson et al., 2004; Chatrou et al., 2012). Mainly as a result of the fact that the Utrecht wood collection policy has focused primarily on the Neotropics, Annonoideae is much better represented than Malmeoideae by samples and wood anatomical data. Four of the seven tribes of Malmeoideae (Chatrou et al., 2012) are represented in this study: Malmeeae, a Neotropical clade that corresponds well to the CremastospermaMalmea alliance as identified by van Setten & Koek-Noorman (1992) on the basis of fruit and seed characters, Monocarpieae and Miliuseae. The latter forms a seemingly stray group of some Neotropical (e.g. Sapranthus, Stenanona Standl., Desmopsis Saff.), East African and Malagasy, but mostly Asian, taxa, the relationships of which at present are unresolved to some extent (Chatrou et al., 2012; T. Chaowasku et al., unpubl. data). Because of the sister group relationship of Miliuseae and the monogeneric tribe Monocarpieae, these are treated together in the description. Tribe Piptostigmatae, an African clade containing five small genera (Couvreur et al., 2009; Chatrou et al., 2012), is sister to the remaining Malmeoideae and is the fourth tribe sampled. The monogeneric tribes Fenerivieae, Maasieae and Dendrokingstonieae are not taken into consideration here, as wood samples were unavailable.

Piptostigmateae (Fig. 27C)

Genus studied:Greenwayodendron Verdc.

Greenwayodendron oliveri (Engl.) Verdc. is characterized by broad rays and rather numerous bands.

Miliuseae and Monocarpieae (Figs 1A–5F)
image

Figure 1. A–F, Miliuseae. A, Alphonsea mollis Dunn, Uw 29501; B, Desmopsis bibracteata (B.L.Rob.) Saff., Uw 26771; C, Desmopsis panamensis (B.L.Rob.) Saff., Uw 24086; D, Desmopsis sp., Uw 26193; E, Enicosanthum macranthum (King) J.Sinclair, Uw 31869; F, Meiogyne cylindrocarpa (Burck) Heusden, Uw 16685.

Download figure to PowerPoint

image

Figure 2. A–F, Miliuseae. A, B, Fitzalania heteropetala (F.Muell.) F.Muell., Uw 30384; C, Orophea creaghii (Ridl.) Leonar. & P.J.A.Kessler, Uw 32050; D, Miliusa koolsii (Kosterm.) J.Sinclair, Uw 18223; E, Miliusa koolsii, Uw 18272; F, Mitrephora thorelii Pierre, Uw 29514.

Download figure to PowerPoint

image

Figure 3. A–E, Miliuseae; F, Uvarieae. A, Orophea myriantha Merr., Uw 29493; B, Phaeanthus ebracteolatus (C.Presl) Merr., Uw 31376; C, Platymitra arborea (Blanco) Kessler, Uw 10744; D, Polyalthia forbesii F.Muell. ex Diels, Uw 28711; E, Polyalthia sp., Uw 26292; F, Monanthotaxis parvifolia· (Oliv.) Verdc., Uw 29499.

Download figure to PowerPoint

image

Figure 4. A–F, Miliuseae. A, Pseuduvaria froggattii F.Muell., Uw 30394; B, Pseuduvaria froggattii, Uw 30408; C, Pseuduvaria megalopus (K.Schum.) Y.C.F.Su & Mols, Uw 35942; D, Sapranthus palanga R.E.Fr., Uw 26216; E, Sapranthus palanga, Uw 26772; F, Sapranthus violaceus (Dunal) Saff., Uw 24194.

Download figure to PowerPoint

image

Figure 5. A–E, Miliuseae; F, Monocarpia. A, Sapranthus viridiflorus G.E.Schatz, Uw 26773; B, Stelechocarpus cauliflorus (Scheff.) R.E.Fr., Uw 31305; C, Stenanona costaricensis R.E.Fr., Uw 26231; D, Stenanona panamensis Standl., Uw 24300; E, Stenanona stenopetala (Donn.Sm.) G.E.Schatz, Uw 24298; F, Monocarpia marginalis (Scheff.) J.Sinclair, Uw 29515.

Download figure to PowerPoint

Genera studied:Alphonsea Hook.f. & Thomson, Desmopsis Saff., Enicosanthum Becc., Fitzalania F.Muell., Meiogyne Miq., Miliusa Lesch. ex A.DC., Mitrephora (Blume) Hook.f. & Thomson, Monocarpia Miq., Orophea Blume, Phaeanthus Hook.f. & Thomson, Platymitra Boerl., Polyalthia Blume, Popowia Endl., Pseuduvaria Miq., Sapranthus Seem., Stelechocarpus (Blume) Hook.f. & Thomson and Stenanona Standl.

The phylogenetic relationships among genera of Miliuseae are generally unclear. Of the genera in our sample, close phylogenetic relationships have been demonstrated among three Asian genera of Miliuseae, Alphonsea, Miliusa and Orophea (Mols et al., 2004), and between three Central American genera belonging to the same tribe, Desmopsis, Sapranthus and Stenanona (T. Chaowasku et al., unpubl. data).

In their study of the wood anatomy of Desmopsis (Fig. 1B–D), Sapranthus (Figs 4D–F, 5A) and Stenanona (Fig. 5C–E), Ter Welle & Van Rooden (1982) concluded that the three genera could be separated on the basis of the presence vs. absence of uniseriate rays, and quantitative ray characters such as height, width and number and vessel member length. However, they were unable to distinguish this group of three genera from Annonaceae as a whole as the characters ‘… match perfectly the annonaceous wood anatomical character complex’ (Ter Welle & Van Rooden, 1982, p. 19).

The same can be said for the tribe Miliuseae. Features normally used in the identification of wood all show a wide variation, e.g. diameter and arrangement of vessels, number and width of rays and number of parenchyma bands [compare, for example, Enicosanthum (Fig. 1E: 15% solitary vessels and > 20 parenchyma bands per millimetre) with Miliusa (Fig. 2D, E: 40% solitary vessels and < 10 parenchyma bands per millimeter]. As another example, broad rays in, for example, Enicosanthum and Pseuduvaria (Fig. 4A–C), are in sharp contrast with the narrow rays of, for example, Alphonsea (Fig. 1A).

Chaowasku, Zijlstra & Chatrou (2011) concluded that Fitzalania is nested within Meiogyne on the basis of molecular phylogenetic analyses, and therefore should be considered as a single genus. The wood anatomy of Mcylindrocarpa (Burck) Heusden (Fig. 1F) and Fheteropetala (F.Muell.) F.Muell. (Fig. 2A, B) is highly similar.

Monocarpia (Fig. 5F), the genus that is sister to Miliuseae, shows an extreme difference between the narrow and wide rays in the specimen examined. Uniseriates are numerous. Multiseriates, although not wide in absolute measurements, are eight- to ten-seriate or more, and are high. Wide rays, however, are scarce: less than one per millimetre. Also taking into account the arrangement of the vessels in numerous clusters and the widely spaced parenchyma bands (only five or six per millimetre), the sister group relationship of Monocarpia to Miliuseae is reflected in the wood anatomy, as far as can be judged from the single specimen seen.

Malmeeae (Figs 6A–11C)
image

Figure 6. A–F, Malmeeae. A, Ephedranthus amazonicus R.E.Fr., Uw 29462; B, Ephedranthus guianensis R.E.Fr., Uw 6856; C, Klarobelia cauliflora Chatrou, Uw 34863; D, Klarobelia megalocarpa Chatrou, Uw 35946; E, Mosannona aff. discolor (R.E.Fr.) Chatrou, Uw 26395; F, Mosannona pacifica Chatrou, Uw 35947.

Download figure to PowerPoint

image

Figure 7. A–F, Malmeeae. A, Oxandra asbeckii (Pulle) R.E.Fr., Uw 271; B, Oxandra asbeckii, Uw 1916; C, Oxandra riedeliana R.E.Fr., Uw 7753; D, Oxandra riedeliana, Uw 7793; E, Pseudomalmea boyacana (J.F.Macbr.) Chatrou, Uw 31380; F, Pseudomalmea diclina (R.E.Fr.) Chatrou, Uw 20084.

Download figure to PowerPoint

image

Figure 8. A–F, Malmeeae. A, Cremastosperma brevipes (DC.) R.E.Fr., Uw 31466; B, Cremastosperma brevipes, Uw 33515; C, Cremastosperma cauliflorum R.E.Fr., Uw 30306; D, Cremastosperma microcarpum R.E.Fr., Uw 30309; E, Cremastosperma microcarpum, Uw 34858; F, Cremastosperma oblongum R.E.Fr., Uw 26252.

Download figure to PowerPoint

image

Figure 9. A–F, Malmeeae. A, Cremastosperma yamayakatense Pirie, Uw 24523; B, Malmea dielsiana R.E.Fr., Uw 30246; C, Malmea surinamensis Chatrou, Uw 8543; D, Malmea surinamensis, Uw 8629; E, Pseudoxandra obscurinervis Maas, Uw 29456; F, Pseudoxandra polyphleba (Diels) R.E.Fr., Uw 19657.

Download figure to PowerPoint

image

Figure 10. A–F, Malmeeae. A, Bocageopsis canescens (Spruce ex Benth.) R.E.Fr., Uw 29474; B, Bocageopsis multiflora (Mart.) R.E.Fr., Uw 6796; C, Bocageopsis multiflora, Uw 8013; D, Onychopetalum amazonicum R.E.Fr., Uw 29457; E, Unonopsis glaucopetala R.E.Fr., Uw 2317; F, Unonopsis guatterioides (A.DC.) R.E.Fr., Uw 370.

Download figure to PowerPoint

image

Figure 11. A–C, Malmeeae; D–F, Uvarieae. A, Unonopsis perrottetii (A.DC.) R.E.Fr., Uw 772; B, Unonopsis rufescens (Baill.) R.E.Fr., Uw 225; C, Unonopsis sericea Maas & Westra, Uw 36940; D, Exellia scamnopetala (Exell) Boutique, Uw 29528; E, Fissistigma sp., Uw 31788; F, Fissistigma sp., Uw 31788.

Download figure to PowerPoint

Genera studied:Cremastosperma R.E.Fr., Ephedranthus S.Moore, Klarobelia Chatrou, Malmea R.E.Fr., Mosannona Chatrou, Oxandra A.Rich., Pseudomalmea Chatrou, Pseudoxandra R.E.Fr., Bocageopsis R.E.Fr., Onychopetalum R.E.Fr. and Unonopsis R.E.Fr.

Within this clade, referred to as South American-centred Clade in Pirie (2005) and Pirie et al. (2006), the CremastospermaMalmea group (sensuvan Setten & Koek-Noorman, 1992) is sister to a clade comprising Unonopsis, Bocageopsis and Onychopetalum (Pirie et al., 2006; Chatrou et al., 2012). The last three genera have been demonstrated to be closely related (Pirie et al., 2006; Maas, Westra & Vermeer, 2007).

In the CremastospermaMalmea group, the rays mostly tend to be narrow, with occasionally some broader ones in between. In contrast, broad rays prevail in Cremastosperma, especially Ccauliflorum R.E.Fr. (Fig. 8C), but much less in Cmicrocarpum R.E.Fr.; in one specimen of this species, they are even lacking (Fig. 8D). Broad rays are also prominent in Bocageopsis (Fig. 10A–C), Onychopetalum (Fig. 10D) and Unonopsis (Figs 10E–11C), although markedly less so in Uperrottetii (A.DC.) R.E.Fr. (Fig. 11A).

Vessels, whether solitary or in a radial arrangement, appear to be small in most cases. However, a narrow spacing of the rays may enhance an illusion of vessels looking larger than they truly are, notably in Ephedranthus guianensis R.E.Fr. (Fig. 6B) where the rays are so close as to often touch the vessels on both sides. The thin fibre walls in Cremastosperma microcarpum R.E.Fr. (Fig. 8D, E) might be related to the wet habitat of this species. Relatively large vessels appear in Bocageopsis, Onychopetalum and Unonopsis. Unonopsis perrottetii, again, stands somewhat apart by the smaller vessels and, as indicated before, by the narrower rays.

A (rather) fine banding of the parenchyma prevails in most of the genera, but is indistinct in Pseudomalmea diclina (R.E.Fr.) Chatrou (Fig. 7F). In Bocageopsis, Onychopetalum and Unonopsis, however, the banding is rather coarse.

The somewhat aberrant wood of Unonopsis perrottetii, as compared with other species of this genus studied here, should be noted. Vegetatively, Uperrottetii is distinctive by the slightly falcate, narrow leaves with inconspicuous secondary venation resembling the foliage of Bocageopsis multiflora (Mart.) R.E.Fr., rather than that of other Unonopsis spp. (Maas et al., 2007).

The genera Klarobelia, Malmea, Mosannona and Pseudomalmea were formerly treated as one genus, Malmea, until Chatrou (1998) convincingly demonstrated their separate status. This is confirmed by more recent research showing the four genera to be polyphyletic (Pirie et al., 2006; Chatrou et al., 2012). Ter Welle (1998), describing the wood anatomy, concluded that Malmea s.s. can be separated from the other three genera by a combination of the prominent radial multiples and the large number of vessels per mm2 (Fig. 9B–D). In the other three genera, character states overlap in part.

Summarizing, in Malmeeae, an overall tendency seems to prevail towards rather narrow rays and small vessels, often arranged in short to long clusters, but, in contrast, Onychopetalum, Unonopsis and, to a lesser extent, Bocageopsis (and perhaps Ephedranthus) tend towards larger vessels.

Annonoideae

In Annonoideae, the large (≥ 100 spp.) genera Annona, Artabotrys R.Br., Duguetia, Goniothalamus (Blume) Hook.f. & Thomson, Guatteria, Uvaria L. and Xylopia are found, together with their allies. Although their relative position is not yet fully resolved in the analyses of Chatrou et al. (2012) or Erkens, Chatrou & Couvreur (2012), five subclades are recognized.

Monodoreae and Uvarieae (Figs 11D–14D, 40B)
image

Figure 12. A, B, D, Uvarieae; C, E, F, Monodoreae. A, Friesodielsia enghiana (Diels) Verdc., Uw 29536; B, Friesodielsia montana (Engl. & Diels) Steenis, Uw 29519; C, Isolona hexaloba (Pierre) Engl. & Diels, Uw 29497; D, Monanthotaxis poggei Engl. & Diels, Uw 29498; E, Monodora crispata Engl. & Diels, Uw 22122; F, Monodora myristica (Gaertn.) Dunal, Uw 34652.

Download figure to PowerPoint

image

Figure 13. A, Monodoreae; B–F, Uvarieae. A, Monodora undulata (P.Beauv.) Couvreur, Uw 29379; B, Toussaintia hallei Le Thomas, Uw 29546; C, Uvaria angolensis Welw. ex Oliv., Uw 22255; D, Uvaria chamae P.Beauv., Uw 25872; E, Uvaria doeringii Diels, Uw 22121; F, Uvaria sp. (two magnifications), Uw 30698.

Download figure to PowerPoint

image

Figure 14. A–D, Monodoreae; E, F, Annoneae. A, Uvariodendron molundense (Engl. & Diels) R.E.Fr., Uw 29542; B, Uvariodendron molundense (tangential section), Uw 29542; C, Uvariopsis congolana (De Wild.) R.E.Fr., Uw 29503; D, Uvariopsis congolana, Uw 29511; E, Annona annonoides (R.E.Fr.) Maas & Westra, Uw 7989; F, Annona calcarata (R.E.Fr.) H. Rainer, Uw 19892.

Download figure to PowerPoint

Genera studied:Exellia Boutique, Fissistigma Griff., Friesodielsia Steenis, Isolona Engl., Monanthotaxis Baill. (including Enneastemon Exell), Monodora Dunal, Toussaintia Boutique, Uvaria L., Uvariodendron (Engl. & Diels) R.E.Fr. and Uvariopsis Engl.

The genera discussed in this section belong to clade N of Chatrou et al. (2012), including Monodoreae and Uvarieae. In their study of syncarpy and other morphological characters, Couvreur et al. (2008) discussed the phylogenetic position of Isolona and Monodora in relation to other African Annonaceae. Both genera were found in their ‘African Long Branch clade’, now tribe Monodoreae, with, among others, Uvariastrum Engl. and Uvariopsis Engl. Monanthotaxis, Toussaintia and Uvaria belong to Uvarieae, the sister group of Monodoreae.

The position of Enneastemon (Fig. 40B) has been the subject of discussion. The genus was reduced to sectional status under Monanthotaxis by Verdcourt (1971) and Eseretii (De Wild.) Robyns & Ghesq. was reduced to varietal status as M. schweinfurthii (Engl. & Diels) Verdc. var. seretii (De Wild.) Verdc. The resemblance between the wood of this species and one of two other available samples of Monanthotaxis (Mpoggei Engl. & Diels, Fig. 12D) is rather weak. However, the wood of Mschweinfurthii var. seretii is rather similar to that of Monanthotaxis parvifolia·(Oliv.) Verdc. (Fig. 3F). These differences almost certainly reflect the taxonomy of Monanthotaxis, which is in disarray.

The four samples of Uvaria (Fig. 13C–F) show much variation in both the number and diameter of the vessels and in the number and width of the rays. There is some resemblance to Monodora (Figs 12E, F, 13A) and Isolona (Fig. 12C), with their rather narrow vessels, i.e. often less than half as wide as the distance between two rays, in combination with rather wide rays, notably in Monodora crispata Engl. and Mmyristica (Gaertn.) Dunal. (Fig. 12E, F). Uvariopsis (Fig. 14C, D) and, to a lesser extent, Uvariodendron (Fig. 14A, B) show a similar combination of characters.

The structure of Friesodielsia (Fig. 12A, B), like that of Toussaintia (Fig. 13B) and Exellia (Fig. 11D), clearly shows the liana habit. Fissistigma (Fig. 11E, F) stands out by its vasicentric parenchyma.

Annoneae (Figs 14E–20B)
image

Figure 15. A–F, Annoneae. A, Annona cherimolioides Triana & Planch., Uw s.n.; B, Annona cf. cuspidata (Mart.) H. Rainer, Uw 4050; C, Annona cf. densicoma Mart., Uw 4012; D, Annona dolichophylla R.E.Fr., Uw 30303; E, Annona edulis (Triana & Planch.) H.Rainer, Uw 30324; F, Annona emarginata (Schltdl.) H.Rainer, Uw 12880.

Download figure to PowerPoint

image

Figure 16. A–F, Annoneae. A, Annona emarginata (Schltdl.) H.Rainer, Uw 13209; B, Annona exsucca DC., Uw 770; C, Annona fendleri (R.E.Fr.) H.Rainer, Uw 35096; D, Annona glabra L., Uw 4492; E, Annona haematantha Miq., Uw 2572; F, Annona jucunda (Diels) H.Rainer, Uw 30279.

Download figure to PowerPoint

image

Figure 17. A–F, Annoneae. A, Annona montana Macfad., Uw 1465; B, Annona mucosa Jacq., Uw 30239; C, Annona muricata L., Unw 546; D, Annona neosericea H.Rainer, Uw 12501; E, Annona neoulei H.Rainer, Uw 30235; F, Annona neovelutina H.Rainer, Uw 29435.

Download figure to PowerPoint

image

Figure 18. A–F, Annoneae. A, Annona quinduensis Kunth, Uw 37079; B, Annona senegalensis Persoon, Uw 15581; C, Annona sericea Dunal, Uw 32438; D, Annona sylvatica A.St.-Hil., Uw 14352; E, Annona cf. williamsii (Rusby ex R.E.Fr.) H.Rainer, Uw 30255; F, Anonidium mannii (Oliv.) Engl. & Diels, Uw 29488.

Download figure to PowerPoint

image

Figure 19. A–F, Annoneae. A, Anonidium mannii (Oliv.) Engl. & Diels, Uw 25871; B, Anonidium mannii (tangential section), Uw 25871; C, Asimina triloba (L.) Dunal, Uw 8474; D, Asimina triloba (tangential section), Uw 8474; E, Diclinanona calycina (Diels) R.E.Fr., Uw 16135; F, Diclinanona tessmannii Diels, Uw 30327.

Download figure to PowerPoint

image

Figure 20. A, B, Annoneae; C–F, Duguetieae. A, Diclinanona tessmannii Diels, Uw 30342; B, Goniothalamus giganteus Hook.f. & Thomson, Uw 29389; C, Duguetia argentea (R.E.Fr.) R.E.Fr., Uw 8182; D, Duguetia bahiensis Maas, Uw 31902; E, Duguetia cadaverica Huber, Uw 29933; F, Duguetia cadaverica (tangential section), Uw 29933.

Download figure to PowerPoint

Genera studied:Annona L., Anonidium Engl. & Diels, Asimina Adanson, Diclinanona Diels and Goniothalamus (Blume) Hook.f. & Thomson.

The largest genus in this clade is the Neotropical-African genus Annona (now also including Rollinia A.St.-Hil. and Raimondia Saff.) (Figs 14E–18E). The morphology of the flowers and fruits in Annona is variable, and this is paralleled by the range of variation in wood features, which largely parallels that of the family as a whole. The large intervessel pits (7–9 µm) are remarkable. Anonidium (Figs 18F, 19A), with its relatively few, large vessels and wide rays, shares the incomplete rings of vasicentric parenchyma with some specimens of Annona.

Ter Welle (1995) concluded that it was impossible to distinguish between the closely related genera Annona, Anonidium and Rollinia, then considered a distinct genus. He also did not find any discriminating character, qualitative or quantitative, that would have enabled the recognition of these genera as a separate group within the family. This is mainly because of the large overlap in variation between Annona and the family as a whole. Several species have rhombic crystals in rays and axial parenchyma cells (Ter Welle, 1992). In A. cf. densicoma Mart. (Fig. 15C) and Amontana Macfad. (Fig. 17A), the rays vary from narrow to (particularly in Amontana) broad. Vessels in Amontana are rather large and mostly solitary, and similar (but even larger) in Asericea Dunal. Annona cf. densicoma has distinctly smaller vessels, mostly in a radial arrangement. The banding pattern of the parenchyma bands is relatively fine in A. cf. densicoma, but coarse in Amontana.

A comparable range of vessel size is seen in species formerly placed in Rollinia. The largest vessels are found in A. calcarata (R.E.Fr.) H.Rainer (Fig. 14F) and A. neovelutina H.Rainer (Fig. 17F). The rays are relatively narrow in A. emarginata (Schltdl.) H.Rainer (Figs 15F, 16A), and more variable in A. cf. cuspidata (Mart.) H.Rainer (Fig. 15B). The banding, however, is rather coarse to very coarse in all former Rollinia spp. seen, with (seasonal) variations in A. edulis (Triana & Planch.) H.Rainer (Fig. 15E), A. fendleri (R.E.Fr.) H.Rainer (Fig. 16C) and A. neosericea H.Rainer (Fig. 17D).

Diclinanona (Fig. 19E–20A), a genus recently shown to belong to Annonoideae (T. Chaowasku et al., unpubl. data), stands out by relatively low multiseriate rays and thin-walled fibres, in particular along the rays and the parenchyma bands. It has slightly more vessels, sometimes in clusters. The single photographed specimen of Goniothalamus (Fig. 20B) has few parenchyma bands: five or six per millimetre.

The wood of Asimina triloba (L.) Dunal (Fig. 19C, D), an exceptional species because of its temperate distribution, is ring porous. The small vessels are arranged in large clusters; parenchyma bands are scanty and poorly visible, and are almost restricted to the zones of latewood.

Duguetieae (Figs 20C–26F)
image

Figure 21. A–F, Duguetieae. A, Duguetia calycina Benoist, Uw 761; B, Duguetia calycina, Uw 15331; C, Duguetia cauliflora R.E.Fr., Uw 3951; D, Duguetia cf. cauliflora, Uw 4706; E, Duguetia chrysea Maas, Uw 36236; F, Duguetia confinis (Engl. & Diels) Chatrou, Uw 35931.

Download figure to PowerPoint

image

Figure 22. A–F, Duguetieae. A, Duguetia echinophora R.E.Fr., Uw 19482; B, Duguetia eximia Diels, Uw 29917; C, Duguetia flagellaris Huber, Uw 36736; D, Duguetia furfuracea (A.St.-Hil.) Saff., Uw 29402; E, Duguetia granvilleana Maas, Uw 29888; F, Duguetia latifolia R.E.Fr., Uw 7462.

Download figure to PowerPoint

image

Figure 23. A–F, Duguetieae. A, Duguetia neglecta Sandw., Uw 26336; B, Duguetia neglecta, Uw 27370; C, Duguetia odorata (Diels) J.F.Macbr., Uw 19628; D, Duguetia pauciflora Rusby, Uw 762; E, Duguetia pycnastera Sandwith, Uw 11121; F, Duguetia pycnastera, Uw 30266.

Download figure to PowerPoint

image

Figure 24. A–F, Duguetieae. A, Duguetia quitarensis Benth., Uw 30521; B, Duguetia riparia Huber, Uw 17969; C, Duguetia staudtii (Engl. & Diels) Chatrou, Uw 6562; D, Duguetia staudtii, Uw 29374; E, Duguetia staudtii (tangential and radial section), Uw 29374; F, Duguetia stelechantha (Diels) R.E.Fr., Uw 16453.

Download figure to PowerPoint

image

Figure 25. A–F, Duguetieae. A, Duguetia stenantha R.E.Fr., Uw 30330; B, Duguetia surinamensis R.E.Fr., Uw 7601; C, Duguetia surinamensis, Uw 15325; D, Duguetia uniflora (DC.) Mart., Uw 8276; E, Duguetia yeshidan Sandwith, Uw 36493; F, Duguetia yeshidan, Uw 36493.

Download figure to PowerPoint

image

Figure 26. A–F, Duguetieae. A, Fusaea longifolia (Aubl.) Saff., Uw 4559; B, Fusaea longifolia, Uw 16133; C, Fusaea longifolia, Uw 30329; D, Fusaea peruviana R.E.Fr., Uw 35939; E, Fusaea peruviana, Uw 35940; F, Pseudartabotrys letestui Pellegr., Uw 35932.

Download figure to PowerPoint

Genera studied:Duguetia A.St.-Hil., Fusaea (Baill.) Saff., Pseudartabotrys Pellegr.

The wood of Duguetia and Fusaea was studied by Ter Welle & Du (2003) and Ter Welle (1999), respectively. Duguetia (including Pachypodanthium Engl. & Diels; Chatrou, Koek-Noorman & Maas, 2000) (Figs 20C–25F), although easily recognized by, among other characters, indument and fruit characteristics, shows a great variation in the wood. Sometimes even within a single species much variation is seen, e.g. in Dneglecta Sandwith (Fig. 23A, B). Distinction between species, in spite of all the variation, is not possible, and only extremes might stand out.

Rays vary from broad to very broad in Dcadaverica Huber (Fig. 20E, F) to narrow and close together in, for example, Dlatifolia R.E.Fr. (Fig. 22F) and Dodorata (Diels) J.F.Macbr. (Fig. 23C). The banding is very fine in Dcadaverica, and fine to rather coarse in the other species.

In most species, vessels are small and radially arranged, in particular in the two flagellate species Dcadaverica and Dflagellaris Huber (Fig. 22C). In Dsurinamensis R.E.Fr. (Fig. 25B, C), vessels vary from large and partly solitary to smaller and mainly in clusters. The two African species (out of four) represented here, Dconfinis (Engl. & Diels) Chatrou (Fig. 21F) and Dstaudtii (Engl. & Diels) Chatrou (Fig. 24C–E), stand out by having large vessels, notably Dstaudtii. Oil cells, present in several species of Duguetia, are large and conspicuous in the rays of Dstaudtii (Fig. 24E).

In Fusaea (Fig. 26A–E), the vessels, varying from small (Fperuviana R.E.Fr., Fig. 26D, E) to moderately large (≤ 100 µm), are arranged in numerous short radial multiples. As a result of the large size of the ray cells, the rays in Fusaea are wider than would normally correspond to rays four to eight cells wide. The monotypic genus Pseudartabotrys (Fig. 26F) has a climbing habit. The older wood in the centre of the specimen studied is characterized by (rather) large and mainly solitary vessels. In the transition zone to liana-type wood, there is a striking frequency of clusters of smaller vessels.

Xylopieae (Figs 27A, B, 27D–31F)
image

Figure 27. A, B, D–F, Xylopieae; C, Piptostigmateae. A, Artabotrys insignis Engl. & Diels, Uw 29509; B, Artabotrys oliganthus Engl. & Diels, Uw 22118; C, Greenwayodendron oliveri (Engl.) Verdc., Uw 29490; D, Xylopia aethiopica (Dunal) A.Rich., Uw 25875; E, Xylopia aethiopica (tangential section), Uw 25875; F, Xylopia aethiopica (radial section), Uw 25875.

Download figure to PowerPoint

image

Figure 28. A–F, Xylopieae. A, Xylopia aromatica (Lam.) Mart., Uw 773; B, Xylopia aromatica (tangential section), Uw 7762; C, Xylopia amazonica R.E.Fr., Uw 2563; D, Xylopia benthamii R.E.Fr., Uw 9071; E, Xylopia cayennensis Maas, Uw 5703; F, Xylopia cuspidata Diels, Uw 30325.

Download figure to PowerPoint

image

Figure 29. A–F. Xylopieae. A. Xylopia discreta (L.f.) Sprague & Hutch., Uw 138a; B. Xylopia emarginata Mart. var. duckei R.E.Fr., Uw 17208; C. Xylopia frutescens Aubl., Uw 775; D. Xylopia holtzii Engl., Uw 15600; E. Xylopia malayana Hook.f. & Thomson, Uw 32066; F. Xylopia neglecta (Kuntze) R.E.Fr., Uw 30331.

Download figure to PowerPoint

image

Figure 30. A–F, Xylopieae. A, Xylopia nitida Dunal, Uw 11725; B, Xylopia papuana Diels, Uw 18227; C, Xylopia parviflora (A.Rich.) Benth., Uw 25876; D, Xylopia peekelii Diels, Uw s.n.; E, Xylopia peruviana R.E.Fr., Uw 30241; F, Xylopia polyantha R.E.Fr., Uw 19248.

Download figure to PowerPoint

image

Figure 31. A–F, Xylopieae. A, Xylopia pulcherrima Sandwith, Uw 5020; B, Xylopia quintasii Engl. & Diels, Uw 9501; C, Xylopia surinamensis R.E.Fr., Uw 8875; D, Xylopia toussaintii Boutique, Uw 24209; E, Xylopia trichostemon R.E.Fr., Uw 20127; F, Xylopia xylantha R.E.Fr., Uw 16139.

Download figure to PowerPoint

Genera studied:Artabotrys R.Br. and Xylopia L.

This tribe contains two species-rich groups, the pantropical genus Xylopia and the Palaeotropical genus Artabotrys. In all representatives, the vessel arrangement is partly solitary, partly in short radial multiples.

In Xylopia, there are, in general terms, two extremes. That most often seen shows large vessels, sometimes touching the rays on both sides, and widely spaced parenchyma bands, e.g. X. aromatica (Lam.) Mart. (Fig. 28A, B), X. cayennensis Maas (Fig. 28E), X. nitida Dunal (Fig. 30A), X. papuana Diels (Fig. 30B) and X. surinamensis R.E.Fr. (Fig. 31C). The other tends towards small vessels and numerous parenchyma bands. The most obvious examples of this are X. cuspidata Diels (Fig. 28F) and X. peruviana R.E.Fr. (Fig. 30E). It is perhaps noteworthy that these two species have stout flowers with comparatively broad petals, whereas most Xylopia spp. have elongate flowers with rather narrow petals. It should be added that there is no strong correlation between the vessel, parenchyma and petal characters: for example, in X. xylantha R.E.Fr. (Fig. 31F), flowers with broad petals occur with wide vessels and widely spaced parenchyma bands. Narrow rays dominate in a number of species of the first group, thus giving an impression of a finer grain [see, for example, X. aromatica, Fig. 28A, B; X. benthamii R.E.Fr., Fig. 28D; X. neglecta (Kuntze) R.E.Fr., Fig. 29F]. Examples of transitional species are X. holtzii Engl., X. parviflora (A.Rich.) Benth. and X. trichostemon R.E.Fr. (Figs 29D, 30C, 31E), in which relatively small vessels are combined with wide rays and few parenchyma bands. In X. aethiopica (Dunal) A.Rich. (Fig. 27D–F), wide vessels in combination with wide rays are found.

Artabotrys oliganthus Engl. & Diels (Fig. 27B) and Ainsignis Engl. & Diels (Fig. 27A) are climbers, like the large majority of species in the genus. In the photograph of Ainsignis, a transition from nonliana wood to liana wood can be observed; the nonliana-type wood in the centre looks rather similar to the wood of (many) Xylopia spp., as just discussed above: note the large vessel diameter in relation to the space between the rays and the widely spaced parenchyma bands. This would be one of the few synapomorphies for the tribe Xylopieae, consisting of Xylopia and Artabotrys only, which seem to have few macromorphological characters in common.

Guatterieae (Figs 32A–36A)
image

Figure 32. A–F, Guatterieae. A, Guatteria alta R.E.Fr., Uw 25132; B, Guatteria anomala R.E.Fr., Uw 36880; C, Guatteria atra Sandwith, Uw 34267; D, Guatteria blainii (Griseb.) Urb., Uw 29375; E, Guatteria campinensis (Morawetz & Maas) Erkens & Maas, Uw 29468; F, Guatteria conspicua R.E.Fr., Uw 1241.

Download figure to PowerPoint

image

Figure 33. A–F, Guatterieae. A, Guatteria curvipetala R.E.Fr., Uw 7806; B, Guatteria elegantissima R.E.Fr., Uw 25071; C, Guatteria discolor R.E.Fr., Uw 8134; D, Guatteria discolor (tangential section), Uw 8134; E, Guatteria dusenii R.E.Fr., Uw 13675; F, Guatteria dusenii (tangential section), Uw 13675.

Download figure to PowerPoint

image

Figure 34. A–F, Guatterieae. A. Guatteria heteropetala Benth., Uw 33073; B. Guatteria hispida (R.E.Fr.) Erkens & Maas, Uw 29458; C. Guatteria monticola R.E.Fr., Uw 34268; D. Guatteria obovata R.E.Fr., Uw 29461; E. Guatteria poeppigiana Mart., Uw 17242; F. Guatteria procera R.E.Fr., Uw 2567.

Download figure to PowerPoint

image

Figure 35. A–F, Guatterieae. A, Guatteria punctata (Aubl.) R.A.Howard, Uw 2565; B, Guatteria punctata, Uw 2566; C, Guatteria rubrinervis R.E.Fr., Uw 34270; D, Guatteria scandens Ducke, Uw 24786; E, Guatteria schomburgkiana Mart., Uw 254; F, Guatteria schomburgkiana, Uw 2568.

Download figure to PowerPoint

image

Figure 36. A, Guatterieae; B–F, Bocageeae. A, Guatteria trichostemon R.E.Fr., Uw 16119; B, Cymbopetalum brasiliense (Vell.) Benth. ex Baill., Uw 8867; C, Cymbopetalum schunkei N. A. Murray, Uw 21087; D, Froesiodendron surinamense (R.E.Fr.) R.E.Fr., Uw 5015; E, Porcelia ponderosa (Rusby) Rusby, Uw 19881; F, Porcelia ponderosa (tangential section), Uw 19881.

Download figure to PowerPoint

Genus studied:Guatteria Ruiz & Pav.

Guatteria appears to be one of the few large genera that shows a recognizable structure, as nearly all species studied so far combine a relatively coarse cobweb formed by a relatively large number of broad rays and rather wide parenchyma bands with large, mostly solitary vessels. Careful observation of smooth end grain surfaces reveals the narrow rings of vasicentric parenchyma around the vessels.

The same pattern of vasicentric parenchyma is found in species that were formerly placed in the small genera Guatteriella (Fig. 32E) and Guatteriopsis (Fig. 34B), recently united with Guatteria (Erkens et al., 2007;Erkens & Maas, 2008), namely G. campinensis (Morawetz & Maas) Erkens & Maas and G. hispida (R.E.Fr.) Erkens & Maas. In G. campinensis, the vasicentric rings are two or three cells wide.

Guatteria anomala R.E.Fr. (Fig. 32B) is a deviating species in inflorescence morphology and in wood anatomy, having vessels no more than 60–80 µm wide, and mostly arranged in multiples or clusters of two to five (to eight) cells. Paratracheal parenchyma is absent or restricted to a few strands only. A rather unusual wood pattern is also seen in Guatteria heteropetala Benth. (Fig. 34A), a species long known as Heteropetalum brasiliense Benth., but recently shown to belong to Guatteria (Erkens & Maas, 2008). The paratracheal parenchyma in G. heteropetala is also mostly restricted to a few strands around the narrow vessels. It should be stressed that this character state, although an exception in Guatteria, is common in the family as a whole. Thus, it seems to support the position of G. anomala and G. heteropetala as a link between Guatteria and other Annonaceae. Guatteria scandens Ducke (Fig. 35D) shows a rather gradual transition from small to large vessels, which (as noted before) betrays a climbing habit. The thin fibre walls in G. heteropetala, in combination with the small vessels, are most probably indicative of the wet habitat in which this species is found.

Bocageeae (Figs 36B–37A)
image

Figure 37. A, Bocageeae; B–F, Ambavioideae. A, Trigynaea caudata (R.E.Fr.) R.E.Fr., Uw 764; B, Cananga sp., Uw s.n.; C, Cleistopholis glauca Pierre ex Engl. & Diels, Uw 29517; D, Cyathocalyx bancanus Boerl., Uw 26735; E, Cyathocalyx subsessilis Jovet-Ast, Uw 26736; F, Mezzettia leptopoda (Hook.f. & Thomson) King, Uw 29504.

Download figure to PowerPoint

Genera studied:Cymbopetalum Benth., Froesiodendron R.E.Fr., Porcelia Ruiz & Pav. and Trigynaea Schltdl.

In three of the six available specimens of this clade, the vessels are small, 40–50(–60) µm, in contrast with the fourth, Porcelia (Fig. 36E, F), with its ≤ 200 µm wide vessels. However, there are two intermediates: the first is a slide of Porcelia macrocarpa (Warm.) R.E.Fr. (not photographed), obtained from Universidade Federal do Paraná (Curitiba, Paraná, Brazil: CEF no. 250), and the second is a sample of the type collection of Cymbopetalum schunkei N.A.Murray (Fig. 36C). Both show vessels ≤ 100 µm, apparently bridging the gap.

Ambavioideae (Figs 37B–38D)
image

Figure 38. A–D, Ambavioideae; E, F, Anaxagoreoideae. A, Mezzettia parviflora Becc., Uw 32051; B, Mezzettia umbellata Becc., Uw 29513; C, Tetrameranthus duckei R.E.Fr., Uw 26746; D, Meiocarpidium lepidotum (Oliv.) Engl. & Diels, Uw 9544; E, Anaxagorea acuminata (Dunal) A.DC., Uw 19187; F, Anaxagorea acuminata, Uw 21064.

Download figure to PowerPoint

Genera studied:Cananga (DC.) Hook.f. & Thomson, Cleistopholis Pierre ex Engl., Cyathocalyx Champ. ex Hook.f. & Thomson, Meiocarpidium Engl. & Diels, Mezzettia Becc. and Tetrameranthus R.E.Fr.

This early diverging clade varies in all features mentioned thus far: vessel number and diameter, ray number and width, and number of parenchyma bands. Tetrameranthus duckei R.E.Fr. (Fig. 38C) was studied by Ter Welle (1985). As the most notable features, he mentioned the wide and high (≤ 5000 µm) multiseriate rays and the paratracheal, often nearly or fully vasicentric, parenchyma. Vasicentric parenchyma occurs in a minority of the family (e.g. Guatteria). Wheeler et al. (2004 onwards) indicate the presence of this feature in 15 of c. 270 species of Annonaceae included (at the time of writing) in the InsideWood database (2004 onwards), including one species each of Cleistopholis and Mezzettia and three of the five species of Cyathocalyx. Although paratracheal parenchyma is present in all five genera of this clade, we cannot confirm the occurrence of vasicentric rings, except in Tetrameranthus.

Anaxagoreoideae

Genus studied:Anaxagorea A.St.-Hil. (Figs 38E–40A).

image

Figure 39. A–F, Anaxagoreoideae. A, Anaxagorea brevipes Benth., Uw 19724; B, Anaxagorea dolichocarpa Sprague & Sandwith, Uw 2564; C, Anaxagorea dolichocarpa (tangential section), Uw 19575; D, Anaxagorea dolichocarpa (radial section), Uw 19575; E, Anaxagorea dolichocarpa, Uw 20017; F, Anaxagorea guatemalensis Standl., Uw 29438.

Download figure to PowerPoint

image

Figure 40. A, Anaxagorea phaeocarpa Mart., Uw 23646; B, Monanthotaxis schweinfurthii (Engl. & Diels) Verdc.var. seretii (De Wild.) Verdc., Uw 29516; C, Duguetia argentea (R.E.Fr.) R.E.Fr., Uw 8182, idioblasts in ray cells; left: tangential section, bar = 110 µm; right: radial section, bar = 85 µm; D, Guatteria maypurensis Kunth, Uw 2679; left: transverse section, showing vasicentric and reticulate parenchyma, bar = 110 µm; right: tangential section, showing multiseriate rays and axial parenchyma, bar = 110 µm; E, Fusaea; left: F. peruviana R.E.Fr., Uw 35940, tangential section, bar = 110 µm; right: F. longifolia (Aubl.) Saff., Uw 30329, radial section, showing small rhombic crystals in ray cells, bar = 20 µm; F, Anaxagorea dolichocarpa Sprague & Sandwith; left: Uw 2564, tangential section, bar = 110 µm; right: Uw 2031, radial section (above) and tangential section (below), showing druses in ray cells, bar = 20 µm.

Download figure to PowerPoint

Anaxagorea is sister to all other Annonaceae (Richardson et al., 2004; Chatrou et al., 2012). The wood of Anaxagorea is rather uniform, characterized by the frequent presence of broad rays rather wide apart, and small vessels often in a radial arrangement, the multiples and groups consisting of two to six (to eight) vessels. In the family, Anaxagorea stands apart by the occurrence of small druses (c. 10–15 µm in diameter) in the ray cells of both Neotropical and Palaeotropical species (Ter Welle, 1984).

CONCLUSIONS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

Wood anatomical characters that may support phylogenetic conclusions are found at the microscopic level, and not at the macroscopic level. Wood anatomical features may be useful when using a hand lens at the generic level. At the species level, however, the wood anatomy can show great variability, even within one individual, depending on the organ, age, etc. Therefore, wood anatomical characters of Annonaceae can be used to verify plant identifications as long as the above considerations are taken into account.

ACKNOWLEDGEMENTS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

Thanks are due to Pete Gasson for reviewing this article and Lars Chatrou for valuable suggestions and assistance.

REFERENCES

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix
  • APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105121.
  • Chaowasku T, Zijlstra G, Chatrou LW. 2011. (2029) Proposal to conserve the name Meiogyne against Fitzalania (Annonaceae). Taxon 60: 15221523.
  • Chatrou LW. 1998. Changing genera: systematic studies in Neotropical and West African Annonaceae. PhD Thesis, Utrecht University.
  • Chatrou LW, Koek-Noorman J, Maas PJM. 2000. Studies in Annonaceae XXXVI. The Duguetia alliance: where the ways part. Annals of the Missouri Botanical Garden 87: 234245.
  • Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, Abbott JR, Mols JB, Maas JW, Saunders RMK, Chase MW. 2012. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Botanical Journal of the Linnean Society 169: 540.
  • Couvreur TLP, Richardson JE, Sosef MSM, Erkens RHJ, Chatrou LW. 2008. Evolution of syncarpy and other morphological characters in African Annonaceae: a posterior mapping approach. Molecular Phylogenetics and Evolution 47: 302318.
  • Couvreur TLP, van der Ham RWJM, Mbele YM, Mbago FM, Johnson DM. 2009. Molecular and morphological characterization of a new monotypic genus of Annonaceae, Mwasumbia, from Tanzania. Systematic Botany 34: 266276.
  • Erkens RHJ, Chatrou LW, Couvreur TLP. 2012. Radiations and key innovations in a basal angiosperm lineage (Annonaceae; Magnoliales). Botanical Journal of the Linnean Society 169: 117134.
  • Erkens RHJ, Chatrou LW, Koek-Noorman J, Maas JW, Maas PJM. 2007. Classification of a large and widespread genus of Neotropical trees, Guatteria (Annonaceae) and its three satellite genera Guatteriella, Guatteriopsis and Heteropetalum. Taxon 56: 757774.
  • Erkens RHJ, Maas PJM. 2008. The Guatteria group disentangled: sinking Guatteriopsis, Guatteriella, and Heteropetalum into Guatteria. Rodriguésia 59: 401406.
  • Erkens RHJ, Mennega EA, Westra LYT. 2012. A concise bibliographic overview of Annonaceae. Botanical Journal of the Linnean Society 169: 4173.
  • Gottwald H. 1977. The anatomy of secondary xylem and the classification of ancient dicotyledons. Plant Systematics and Evolution. Supplementum 1: 111121.
  • Hess RW. 1946. Identification of New World timbers. Part III. (Annonaceae). Tropical Woods 88: 1330.
  • Ilic J. 1991. CSIRO atlas of hardwoods. Berlin and Heidelberg: Springer Verlag.
  • Ingle HD, Dadswell HI. 1953. The anatomy of the timbers of the southwest Pacific. II. Apocynaceae and Annonaceae. Australian Journal of Botany 1: 126.
  • Insidewood. 2004 onwards. Available at: http://www.insidewood/lib.ncsu.edu/search (Accessed 2 January 2012).
  • Lindeman JC, Mennega AMW. 1963. Bomenboek voor Suriname. Herkenning van Surinaamse houtsoorten aan hout en vegetatieve kenmerken. Paramaribo: Dienst's Lands Bosbeheer.
  • Maas PJM, Westra LYT, Vermeer M. 2007. Revision of the Neotropical genera Bocageopsis, Onychopetalum, and Unonopsis (Annonaceae). Blumea 52: 413554.
  • Metcalfe CR. 1987. Anatomy of the dicotyledons, 2nd edn, Vol. III. Magnoliales, Illiciales, and Laurales. Oxford: Clarendon Press.
  • Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons. Oxford: Clarendon Press.
  • Moll JW, Janssonius HH. 1906. Micrographie des Holzes der auf Java vorkommenden Baumarten. I. Leiden: Brill.
  • Mols JB, Gravendeel B, Chatrou LW, Pirie MD, Bygrave PC, Chase MW, Kessler PJA. 2004. Identifying clades in Asian Annonaceae: monophyletic genera in the polyphyletic Miliuseae. American Journal of Botany 91: 590600.
  • Pfeiffer SJ. 1926. De houtsoorten van Suriname I. Amsterdam: Kol. Inst.. Mededeling 22, Afdeeling Handelsmuseum 6.
  • Pirie MD. 2005. Cremastosperma (and other evolutionary digressions). Molecular phylogenetic, biogeographic, and taxonomic studies in Neotropical Annonaceae. PhD Thesis, Utrecht University.
  • Pirie MD, Chatrou LW, Mols JB, Erkens RHJ, Oosterhof J. 2006. ‘Andean-centred’ genera in the short-branch clade of Annonaceae: testing biogeographic hypotheses using phylogeny reconstruction and molecular dating. Journal of Biogeography 33: 3146.
  • Rainer H, Chatrou LW. 2006. AnnonBase: world species list of Annonaceae – version 1.1, 12 Oct 2006. Available at: http://www.sp2000.org and http://www.annonaceae.org (Accessed 25 Feb 2012).
  • Richardson JE, Chatrou LW, Mols JB, Erkens RHJ, Pirie MD. 2004. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society B 359: 14951508.
  • Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, Le Thomas A. 2003. Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Botanical Journal of the Linnean Society 142: 125186.
  • van Setten AK, Koek-Noorman J. 1992. Studies in Annonaceae. XVII. Fruits and seeds of Annonaceae: morphology and its significance for classification. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.
  • Solereder H. 1899. Systematische Anatomie der Dicotyledonen. Stuttgart: Enke.
  • Solereder H. 1908. Systematische Anatomie der Dicotyledonen. Ergänzungsband. Stuttgart: Enke.
  • Stern WL. 1988. Index xylariorum 3. IAWA Bulletin n.s. 9: 203252.
  • Stevens PF. 2001 onwards. Angiosperm phylogeny website. Version 9, June 2008 [and more or less updated since]. Available at: http://www.mobot.org/MOBOT/research/APweb/ (Accessed 10 September 2011).
  • Ter Welle BJH. 1984. Wood anatomy. In: Maas PJM, Westra LYT, eds. Studies in Annonaceae. II. A monograph of the genus Anaxagorea A. St. Hil. Part 1. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 105: 8284.
  • Ter Welle BJH. 1985. Wood anatomy. In: Westra LYT, ed. Studies in Annonaceae. IV. A taxonomic revision of Tetrameranthus R.E. Fries. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C, Biological and Medical Sciences 88: 455456.
  • Ter Welle BJH. 1992. Wood anatomy. In: Maas PJM, Westra LYT, collaborators, eds. Rollinia. Flora Neotropica Monograph 57: 2126.
  • Ter Welle BJH. 1995. Wood anatomy. In: Westra LYT, ed. Studies in Annonaceae. XXIV. A taxonomic revision of Raimondia Safford. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 117: 276278.
  • Ter Welle BJH. 1998. Wood anatomy. In: Chatrou LW, ed. Changing genera: systematic studies in Neotropical and West African Annonaceae. PhD Thesis, Utrecht University, 113116.
  • Ter Welle BJH. 1999. Wood anatomy. In: Chatrou LW, He P, eds. Studies in Annonaceae. XXXIII. A revision of Fusaea (Baill.) Saff. Brittonia 51: 190191.
  • Ter Welle BJH, Du N. 2003. Wood anatomy. In: Maas PJM, Westra LYT, Chatrou LW, collaborators, eds. Duguetia (Annonaceae). Flora Neotropica Monograph 88: 2528.
  • Ter Welle BJH, van Rooden J. 1982. Systematic wood anatomy of Desmopsis, Sapranthus and Stenanona (Annonaceae). IAWA Bulletin n.s. 3: 1523.
  • Vander Wijk RW. 1950. The comparative morphology of the Annonaceae. PhD Thesis, Harvard University, Cambridge, MA.
  • Vander Wijk RW, Canright JE. 1956. The anatomy and relationships of the Annonaceae. Tropical Woods 104: 124.
  • Verdcourt B. 1971. Notes on East African Annonaceae. Kew Bulletin 25: 134.
  • Westra LYT, Koek-Noorman J. 2003. Hand lens aspects of annonaceous wood. Annonaceae Newsletter 14: 2334. Available at: http://www.annonaceae.org/newsletter/ (Accessed 25 February 2012).
  • Westra LYT, Koek-Noorman J. 2004. Wood atlas of the Euphorbiaceae sl. IAWA Journal Supplement 4: 1110.

Appendix

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. MATERIAL AND METHODS
  5. RESULTS AND DISCUSSION
  6. CONCLUSIONS
  7. ACKNOWLEDGEMENTS
  8. REFERENCES
  9. Appendix

APPENDIX 1

Wood samples of Annonaceae studied. Wood collection numbers are indicated by their standard International Association of Wood Anatomists (IAWA) acronym (Stern, 1988). The addition of the capital ‘N’ indicates material collected in the Netherlands from a cultivated plant. 1Herbarium vouchers may be deposited elsewhere. If no herbarium voucher exists, the source from which the specimen was obtained is indicated between square brackets. Synonyms are indicated by ‘ = ’. Uw numbers refer to the Utrecht wood collection.

GenusSpeciesCollector & nr.1Uw numberFigure
Alphonsea Hook.f. & Thomsonmollis Dunn[Tw 41668]295011A
Anaxagorea A.St.-Hil.acuminata (Dunal) A.DC.Krukoff 10171918738E
acuminata (Dunal) A.DC.Irwin et al. 57661 [in Maguire]2106438F
brevipes Benth.Krukoff 50481972439A
dolichocarpa Sprague & SandwithMaguire 24605256439B, 40F
dolichocarpa Sprague & SandwithKrukoff 47001957539C, D
dolichocarpa Sprague & SandwithKrukoff 55322001739E
guatemalensis Standl.Record 412943839F
phaeocarpa Mart.W.A. Rodrigues & Coêlho 24602364640A
Annona L.annonoides (R.E.Fr.) Maas & WestraKrukoff 6856798914E
calcarata (R.E.Fr.) H.RainerKrukoff 53151989214F
=Rollinia calcarata R.E.Fr.   
cherimolioides Triana & Planch.Madison et al. 4936s.n.15A
=Raimondia cherimolioides (Triana & Planch.) R.E.Fr.   
cf. cuspidata (Mart.) H.RainerLindeman 5906405015B
=Rollinia cuspidata Mart.   
cf. densicoma Mart.Lindeman 5861401215C
dolichophylla R.E.Fr.Maas et al. 62663030315D
edulis (Triana & Planch.) H.RainerMaas et al. 63053032415E
=Rollinia edulis Triana & Planch.   
emarginata (Schltdl.) H.RainerLindeman & De Haas 10771288015F
=Rollinia emarginata Schltdl.   
emarginata (Schltdl.) H.RainerLindeman & De Haas 16211320916A
=Rollinia emarginata Schltdl.   
exsucca DC.Fanshawe 1248 [Forest Dep. Br. Guiana 3984]77016B
fendleri (R.E.Fr.) H.RainerLl. Williams 100113509616C
=Rollinia fendleri R.E.Fr.   
glabra L.Lindeman 6640449216D
haematantha Miq.Maguire 24470257216E
jucunda (Diels) H.RainerMaas et al. 62123027916F
=Rollinia peruviana Diels   
montana Macfad.Lanjouw & Lindeman 1373146517A
mucosa Jacq.Maas et al. 60063023917B
muricata L.Cult. Cantonspark Baarn 431N 54617C
neosericea H.RainerLindeman & De Haas 2211250117D
=Rollinia sericea (R.E.Fr.) R.E.Fr.   
neoulei H.RainerMaas et al. 59723023517E
=Rollinia ulei Diels   
neovelutina H.RainerVan der Werff & González 47472943517F
=Rollinia velutina van Marle   
quinduensis KunthSánchez et al. 12583707918A
=Raimondia quinduensis (Kunth) Saff.   
senegalensis PersoonSchlieben s.n. [Reinbek 1674]1558118B
sericea DunalMaas et al. 71443243818C
sylvatica A.St.-Hil.Hatschbach, Lindeman & De Haas 138761435218D
cf. williamsii (Rusby ex R.E.Fr.) H. RainerMaas et al. 60733025518E
=Rollinia williamsii Rusby ex R.E.Fr.   
Anonidium Engl. & Dielsmannii (Oliv.) Engl. & DielsMildbraed 72587119A, B
mannii (Oliv.) Engl. & Diels[Tw 362]2948818F
Artabotrys R.Br.insignis Engl. & DielsJ. Louis 14322950927A
oliganthus Engl. & DielsVersteegh & Den Outer 6662211827B
Asimina Adans.triloba (L.) Dunal[USw 0008638]847419C, D
Bocageopsis R.E.Fr.canescens (Spruce ex Benth.) R.E.Fr.Morawetz 32–79832947410A
multiflora (Mart.) R.E.Fr.Schulz LBB 8318679610B
multiflora (Mart.) R.E.Fr.Krukoff 6883801310C
Cananga (DC.) Hook.f. & Thomsonsp.M. Jacobs 8469s.n.37B
Cleistopholis Pierre ex Engl.glauca Pierre ex Engl. & DielsA. Sapin 552951737C
Cremastosperma R.E.Fr.brevipes (DC.) R.E.Fr.De Granville et al. 7672314668A
brevipes (DC.) R.E.Fr.Feuillet et al. 10239335158B
cauliflorum R.E.Fr.Maas et al. 6271303068C
microcarpum R.E.Fr.Maas et al. 6281303098D
microcarpum R.E.Fr.Maas & Chatrou 8222348588E
oblongum R.E.Fr.Maas et al. 4592262528F
yamayakatense PirieBerlin 1588245239A
Cyathocalyx Champ. ex Hook.f. & Thomsonbancanus Boerl.D. Normand 6232673537D
subsessilis Jovet-AstGuigonis 172673637E
=Cyathocalyx sumatranus Scheff.   
Cymbopetalum Benth.brasiliense (Vell.) Benth. ex Baill.Schulz LBB 9304886736B
schunkei N.A.MurrayJ. Schunke V. 48292108736C
Desmopsis Saff.bibracteata (B.L.Rob.) Saff.‘A.R.G.’ 1267711B
panamensis (B.L.Rob.) Saff.Cooper & Slater 47240861C
sp.Van Rooden 755261931D
Diclinanona Dielscalycina (Diels) R.E.Fr.Krukoff 83461613519E
tessmannii DielsMaas et al. 63173032719F
tessmannii DielsMaas et al. 63663034220A
Duguetia A.St.-Hil.argentea (R.E.Fr.) R.E.Fr.Krukoff 7111818220C, 40C
bahiensis MaasMaas et al. 69873190220D
cadaverica Huberde Granville et al. 63012993320E, F
calycina BenoistFanshawe 141 [Forest Dep. Br. Guiana 2750]76121A
calycina BenoistOldenburger, Norde & Schulz 4781533121B
cauliflora R.E.Fr.Lindeman 5797395121C
cf. cauliflora R.E.Fr.Lindeman 6991470621D
chrysea MaasJansen-Jacobs et al. 54723623621E
confinis (Engl. & Diels) ChatrouWieringa & Van Nek 32903593121F
=Pachypodanthium confine Engl. & Diels   
echinophora R.E.Fr.Fróes 1905 [dir. Krukoff]1948222A
eximia DielsDe Granville et al. 62652991722B
flagellaris HuberMaas et al. 88233673622C
furfuracea (A.St.-Hil.) Saff.Simonis et al. 852940222D
granvilleana MaasDe Granville et al. 61342988822E
latifolia R.E.Fr.Krukoff 6068746222F
neglecta SandwithLindeman, Görts-van Rijn et al. 592633623A
neglecta SandwithMaas et al. 58872737023B
odorata (Diels) J.F.Macbr.Krukoff 48051962823C
pauciflora RusbyForest Dep. Br. Guiana 369276223D
pycnastera SandwithFlorschütz & Maas 30911112123E
pycnastera SandwithMaas et al. 61833026623F
quitarensis Benth.Jansen-Jacobs et al. 1843052124A
riparia HuberOldenburger, Norde & Schulz 14041796924B
staudtii (Engl. & Diels) ChatrouLeeuwenberg 2579656224C
=Pachypodanthium staudtii Engl. & Diels   
staudtii (Engl. & Diels) ChatrouMildbraed 62937424D, E
=Pachypodanthium staudtii Engl. & Diels   
stelechantha (Diels) R.E.Fr.Maguire et al. 566081645324F
stenantha R.E.Fr.Maas et al. 63253033025A
surinamensis R.E.Fr.Krukoff 6258760125B
surinamensis R.E.Fr.Oldenburger, Norde & Schulz 4711532525C
uniflora (DC.) Mart.Krukoff 7258827625D
yeshidan SandwithJansen-Jacobs et al. 56443649325E, F
Enicosanthum Becc.macranthum (King) J.SinclairVan Balgooy & Van Setten 5614318691E
Ephedranthus S.Mooreamazonicus R.E.Fr.Morawetz 21–13883294626A
guianensis R.E.Fr.Schulz LBB 856868566B
Exellia Boutiquescamnopetala (Exell) BoutiqueHallé & Le Thomas 1632952811D
Fissistigma Griff.sp.Van Balgooy & Van Setten 55533178811E, F
Fitzalania F.Muell.heteropetala (F.Muell.) F.Muell.Morawetz et al. 23–5285303842A, B
Friesodielsia Steenisenghiana (Diels) Verdc.Hallé & Le Thomas 4912953612A
montana (Engl. & Diels) SteenisJ. Louis 12672951912B
=Friesodielsia soyauxii (Spague & Hutch.) Steenis   
Froesiodendron R.E.Fr.surinamense (R.E.Fr.) R.E.Fr.Schulz 7396501536D
Fusaea (Baill.) Saff.longifolia (Aubl.) Saff.Lindeman 6742455926A
longifolia (Aubl.) Saff.Krukoff 80861613326B
longifolia (Aubl.) Saff.Maas et al. 63203032926C, 40E
peruviana R.E.Fr.Vasquez & Jaramillo 85063593926D
peruviana R.E.Fr.Berlin 6373594026E, 40E
Goniothalamus (Blume) Hook.f. & Thomsongiganteus Hook.f. & ThomsonKrukoff 42372938920B
Greenwayodendron Verdc.oliveri (Engl.) Verdc.Bamps 21502949027C
=Artabotrys oliveri (Engl.) Roberty   
Guatteria Ruiz & Pav.alta R.E.Fr.Cuatrecasas 148292513232A
anomala R.E.Fr.Ishiki, Maas et al. 21943688032B
atra SandwithForest Dep. Br. Guiana 36883426732C
blainii (Griseb.) Urb.Sintenis 64152937532D
=Asimina blainii Griseb.   
campinensis (Morawetz & Maas) Erkens & MaasMorawetz 31–248832946832E
=Guatteriella campinensis Morawetz & Maas   
conspicua R.E.Fr.Lanjouw & Lindeman 455124132F
curvipetala R.E.Fr.Krukoff 6600780633A
discolor R.E.Fr.Krukoff 7047813433C, D
dusenii R.E.Fr.Lindeman & De Haas 23301367533E, F
elegantissima R.E.Fr.Cuatrecasas 170282507133B
heteropetala Benth.D.W. Stevenson 11153307334A
=Heteropetalum brasiliense Benth.   
hispida (R.E.Fr.) Erkens & MaasMorawetz 12–258832945834B
=Guatteriopsis hispida R.E.Fr.   
maypurensis KunthA.C. Smith 2452 [Yw 35567]267940D
monticola R.E.Fr.Wilson-Browne 473 [Forest Dep. Br. Guiana 5882]3426834C
obovata R.E.Fr.Morawetz 16–188832946134D
poeppigiana Mart.Pires et al. 51863 [in Maguire]1724234E
procera R.E.Fr.Maguire 24684256734F
punctata (Aubl.) R.A.HowardMaguire 24430256535A
punctata (Aubl.) R.A.Howard.Maguire 24589256635B
rubrinervis R.E.Fr.Wilson-Browne 417 [Forest Dep. Br. Guiana 5816]3427035C
scandens DuckeMaas et al. 36002478635D
schomburgkiana Mart.Stahel 25425435E
schomburgkiana Mart.Maguire 24683256835F
trichostemon R.E.Fr.Krukoff 88621611936A
Isolona Engl.hexaloba (Pierre) Engl. & DielsDechamps 1872949712C
=Isolona bruneelii De Wild.   
Klarobelia Chatroucauliflora ChatrouChatrou et al. 6348636C
megalocarpa ChatrouMaas et al. 8520359466D
Malmea R.E.Fr.dielsiana R.E.Fr.Maas et al. 6026302469B
surinamensis ChatrouDaniëls & Jonker 85985439C
surinamensis ChatrouDaniëls & Jonker 117886299D
Meiocarpidium Engl. & Dielslepidotum (Oliv.) Engl. & DielsBreteler 2646954438D
Meiogyne Miq.cylindrocarpa (Burck) HeusdenDutton et al. 125166851F
=Guamia mariannae (Saff.) Merr.   
Mezzettia Becc.leptopoda (Hook.f. & Thomson) King[Tw 11543]2950437F
parviflora Becc.Van Balgooy & Van Setten 56533205138A
umbellata Becc.[Tw 42298]2951338B
Miliusa Lesch. ex A.DC.koolsii (Kosterm.) J.SinclairBW [Nieuw Guinea] 12407182232D
koolsii (Kosterm.) J.SinclairBW [Nieuw Guinea] 13267182722E
Mitrephora (Blume) Hook.f. & Thomsonthorelii Pierre[Tw 41669]295142F
Monanthotaxis Baill.parvifolia (Oliv.) Verdc.Toussaint 120294993F
=Popowia oliverana Exell & Mendonça   
poggei Engl. & Dielsde Saegher 120 [ Tw 28222 ]2949812D
schweinfurthii (Engl. & Diels) Verdc. var. seretii (De Wild.) Verdc.J. Louis 37782951640B
=Enneastemon seretii (De Wild.) Rob. & Ghesq.   
Monocarpia Miq.marginalis (Scheff.) J.SinclairTw 17495295155F
Monodora Dunalcrispata Engl. & DielsVersteegh & Den Outer 1002212212E
myristica (Gaertn.) DunalH.T. Beck 1291 [Cult.]3465212F
undulata (P.Beauv.) CouvreurStaudt 402937913A
Mosannona Chatrouaff. discolor ( R.E.Fr.) ChatrouLindeman, Görts-van Rijn et al. 283263956E
=Malmea discolor R.E.Fr.   
pacifica ChatrouMaas et al. 8531359476F
Onychopetalum R.E.Fr.amazonicum R.E.Fr.Morawetz 11-89832945710D
Orophea Blumecreaghii (Ridl.) Leonar. & P.J.A.KesslerVan Balgooy & Van Setten 5657320502C
=Mezzettopsis creaghii Ridl.   
myriantha Merr.[Tw 18599]294933A
Oxandra A.Rich.asbeckii (Pulle) R.E.Fr.Stahel 2712717A
asbeckii (Pulle) R.E.Fr.Lanjouw & Lindeman 277119167B
riedeliana R.E.Fr.Krukoff 647177537C
riedeliana R.E.Fr.Krukoff 658577937D
Phaeanthus Hook.f. & Thomsonebracteolatus (C.Presl) Merr.BFA 18612313763B
Platymitra Boerl.arborea (Blanco) Kessler[FPRI 484]107443C
=Alphonsea arborea (Blanco) Merr.   
Polyalthia Blumeforbesii F.Muell. ex DielsBW [Nieuw Guinea] 2553287113D
sp.Nooteboom & Bhargawa BSI 6331262923E
Porcelia Ruiz. & Pav.ponderosa (Rusby) RusbyKrukoff 52991988136E, F
Pseudartabotrys Pellegr.letestui Pellegr.Wieringa & Van Nek 32733593226F
Pseudomalmea Chatrouboyacana (J.F.Macbr.) ChatrouD. Sánchez et al. 1090313807E
diclina (R.E.Fr.) ChatrouKrukoff 5632200847F
Pseudoxandra R.E.Fr.obscurinervis MaasMorawetz 32–15883294569E
polyphleba (Diels) R.E.Fr.Krukoff 4882196579F
Pseuduvaria Miq.froggattii F.Muell.Morawetz et al. 21–27185303944A
froggattii F.Muell.Morawetz et al. 12–6185304084B
megalopus (K.Schum.) Y.C.F.Su & MolsJ. & M.S. Clemens 860359424C
=Petalolophus megalopus K.Schum.   
Sapranthus Seem.palanga R.E.Fr.Van Rooden 868262164D
palanga R.E.Fr.Poveda 300267724E
violaceus (Dunal) Saff.Van Rooden 200241944F
=Sapranthus nicaraguensis Seem.   
viridiflorus G.E.SchatzPoveda 84267735A
Stelechocarpus (Blume) Hook.f. & Thomsoncauliflorus (Scheff.) R.E.Fr.Van Balgooy & Van Setten 5689313055B
Stenanona Standl.costaricensis R.E.Fr.Wilbur & Stone 10706262315C
panamensis Standl.Cooper 427243005D
stenopetala (Donn.Smith) G.E.Schatz.Stevenson 105242985E
=Desmopsis stenopetala (Donn.Smith) R.E.Fr.   
Tetrameranthus R.E.Fr.duckei R.E.Fr.Coêlho INPA 692322674638C
Toussaintia Boutiquehallei Le ThomasHallé 41892954613B
Trigynaea Schltdl.caudata (R.E.Fr.) R.E.Fr.Forest Dep. Br. Guiana 746276437A
Unonopsis R.E.Fr.glaucopetala R.E.Fr.Lindeman 3546231710E
guatterioides (A.DC.) R.E.Fr.Stahel 37037010F
perrottetii (A.DC.) R.E.Fr.Forest Dep. Br. Guiana 483577211A
rufescens (Baill.) R.E.Fr.Stahel 22522511B
sericea Maas & WestraSoejarto & Rentería 36053694011C
Uvaria L.angolensis Welw. ex Oliv.Cult. RBG Kew 4546.292225513C
chamae P.Beauv.Kersting 432587213D
doeringii DielsVersteegh & Den Outer 2862212113E
sp. cf.Edmond s.n.3069813F
Uvariodendron (Engl. & Diels) R.E.Fr.molundense (Engl. & Diels) R.E.Fr.Hallé 32642954214A, B
Uvariopsis Engl.congolana (De Wild.) R.E.Fr.,J. Louis 66832950314C
congolana (De Wild.) R.E.Fr.,J. Louis 36232951114D
Xylopia L.aethiopica (Dunal) A.Rich.Kersting 562587527D, E, F
amazonica R.E.Fr.Maguire 24818256328C
aromatica (Lam.) Mart.Forest Dep. Br. Guiana 77877328A
aromatica (Lam.) Mart.Krukoff 6486776228B
benthamii R.E.Fr.Pires et al. 51825 [in Maguire]907128D
cayennensis MaasBAFOG 57–1214570328E
cuspidata DielsMaas et al. 63123032528F
discreta (L.f.) Sprague & Hutch.Stahel 138a138a29A
emarginata Mart. var. duckei R.E.Fr.Pires et al. 51820 [in Maguire]1720829B
frutescens Aubl. var. frutescensForest Dep. Br. Guiana 365677529C
holtzii Engl.Schlieben 467 [Reinbek 1860]1560029D
malayana Hook.f. & ThomsonVan Balgooy & Van Setten 54673206629E
neglecta (Kuntze) R.E.Fr.Maas et al. 63283033129F
nitida DunalMaas LBB 110261172530A
papuana DielsSchram BW [Nieuw Guinea] 124141822730B
parviflora (A.Rich.) Benth. ?Kersting 892587630C
peekelii DielsCraven & Schodde 258s.n.30D
peruviana R.E.Fr.Maas et al. 60133024130E
polyantha R.E.Fr. var. polyanthaKrukoff 12041924830F
pulcherrima SandwithSchulz 7404502031A
quintasii Engl. & DielsBreteler 2398950131B
surinamensis R.E.Fr.Schulz LBB 9323887531C
toussaintii Boutique[Cult.?] Jardim Ultramar Lisboa 122/162420931D
trichostemon R.E.Fr.Krukoff 56902012731E
xylantha R.E.Fr.Krukoff 87501613931F