Diel abundance, migration and feeding of fish larvae (Eleotridae) in a floodplain billabong



Eleotrid larvae (2.1–16 mm) were collected from surface waters of a billabong in south-eastern Australia. Estimates of larval density in plankton net samples at night averaged 148.3 larvae per m3 and 16.6 larvae per m3 during the day. In contrast, pump samples provided density estimates of 8.3 larvae per m3 at night and 0.9 larvae per m3 during the day. Larval densities did not differ between open water, snag (fallen tree) and Typha habitats, but Typha habitats yielded larger larvae than other habitats. 32.9% of larvae in pump samples were damaged and unmeasurable, creating a bias favouring larger larvae. The modal length of larvae in net samples at night was 5–6 mm, compared with 3–4 mm during the day, reflecting both greater net avoidance by larger larvae during the daytime and dispersal of smaller larvae from the surface at night. Dispersion patterns of larvae suggest that classes of larvae smaller than, and larger than 5.0 mm exhibit reciprocal diel vertical migration behaviour linked to ontogenetic changes in diet. Larvae less than 5 mm fed only during the day and preyed exclusively on rotifers, whereas larger larvae continued to feed at night and consumed mostly planktonic crustaceans.