Skull morphology and functionality of extant Felidae (Mammalia: Carnivora): a phylogenetic and evolutionary perspective




Felids morphology and ecological role as hypercarnivores are quite constant, despite considerable body size variation among species. Skull morphological and functional features of 34 extant cat species were evaluated under a phylogenetic framework of the Felidae. Twenty skull measurements were analysed through Principal Component Analysis to assess the species morphofunctional spaces. Force indexes were obtained from static equilibrium equations to infer jaw mechanics. Correlations between morphological, functional, and ecological traits were tested by phylogenetically independent contrasts. In spite of the general cat-like pattern, specific features on the skulls allowed differentiation among groups. Acinonyx jubatus, for instance, showed a shorter and shallower temporal fossa than other big cats, and their bite functionality is marked by an increased contribution of the masseteric system. A morphofunctional dichotomy between Neotropical and Eurasian/African small cats was detected, and is associated with the major transversal axes of the skulls. According to the contrast analyses, the skull size is correlated with the bite force and prey size, but it is uncorrelated with the variations on jaw mechanics (from temporalis or masseter muscle optimizations). Also, there was no correlation between functional differences on jaw muscles and the ratio of prey weight to cat weight. The efficiency of the jaw apparatus among cats is quite consistent; therefore, the different evolutionary trends of jaw mechanics seem to be caused by the casuistic fixation of phenotypical variations, rather than by specific adaptative selections.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161, 414–462.