Glass Formation and Polyamorphism in Rare-Earth Oxide–Aluminum Oxide Compositions

Authors


  • T. E. Mitchell—contributing editor

  • This research was supported by NASA Microgravity Research Division under Contract Nos. NAS8–40847 and NAS8–98092.

Abstract

We report formation of single- and two-phase glasses from rare-earth oxide–alumina materials. Liquids with the Y3Al5O12 and Er3Al5O12 compositions underwent a liquid–liquid phase transition which resulted in glasses with a cloudy appearance due to spheroids of one glass in a matrix of a second glass. The two glasses were isocompositional within the limits of experimental error. Clear, brilliant, single-phase glasses were obtained from La3Al5O12, ErLaYAl5O12, and compositions containing ≥5 mol% La2O3 substituted for the other rare-earth oxides. Formation of two glasses is attributed to nucleation and growth of the second liquid at a temperature below the equilibrium liquid–liquid transition temperature. Addition of lanthanum depresses the phase transition temperature below the glass transition temperature and the liquid–liquid phase transition is not observed. The results are discussed in the context of first-order liquid–liquid phase transitions (polyamorphism) and formation of single-phase glass from liquids that contain a high proportion of 4-coordinate aluminum ions.

Ancillary