SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Freed E.O., Martin M.A. (2006) HIVs and their replication. In: KnipeD.M., HowleyP.M., eds. Fields Virology, 5th edn. Philadelphia : Lippincott, Williams, and Wilkins, pp. 210786.
  • 2
    LaBranche C.C., Sauter M.M., Haggarty B.S., Vance P.J., Romano J., Hart T.K., Bugelski P. J., Marsh M., Hoxie J. A. (1995) A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J Virol 69: 521727.
  • 3
    Rowell J.F., Stanhope P.E., Siliciano R.F. (1995) Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155: 47388.
  • 4
    Boge M., Wyss S., Bonifacino J.S., Thali M. (1998) A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J Biol Chem 273: 15 7738.
  • 5
    Ohno H., Aguilar R.C., Fournier M.C., Hennecke S., Cosson P., Bonifacino J.S. (1997) Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 238: 30515.
  • 6
    Berlioz-Torrent C., Shacklett B.L., Erdtmann L., Delamarre L., Bouchaert I., Sonigo P., Dokhelar M. C., Benarous R. (1999) Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J Virol 73: 135061.
  • 7
    Lodge R., Lalonde J.P., Lemay G., Cohen E.A. (1997) The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J 16: 695705.
  • 8
    Byland R., Vance P.J., Hoxie J.A., Marsh M. (2007) A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 18: 41425.
  • 9
    Wyss S., Berlioz-Torrent C., Boge M., Blot G., Honing S., Benarous R., Thali M. (2001) The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor. J Virol 75: 298292.
  • 10
    Diaz E., Pfeffer S.R. (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93: 43343.
  • 11
    Blot G., Janvier K., Le Panse S., Benarous R., Berlioz-Torrent C. (2003) Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 77: 693145.
  • 12
    Lopez-Verges S., Camus G., Blot G., Beauvoir R., Benarous R., Berlioz-Torrent C. (2006) Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 103: 14 94752.
  • 13
    Miranda L.R., Schaefer B.C., Kupfer A., Hu Z., Franzusoff A. (2002) Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules. Proc Natl Acad Sci USA 99: 80316.
  • 14
    Freed E.O. (1998) HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251: 115.
  • 15
    Swanstrom R., Wills J.W. (1997) Synthesis, assembly, and processing of viral proteins. In CoffinJ.M., HughesS.H., VarmusH.E., eds. Retroviruses, Cold Spring Harbor , NY : Cold Spring Harbor Laboratory Press, pp. 263334.
  • 16
    Demirov D.G., Freed E.O. (2004) Retrovirus budding. Virus Res 106: 87102.
  • 17
    Hurley J.H., Emr S.D. (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35: 27798.
  • 18
    Morita E., Sundquist W.I. (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20: 395425.
  • 19
    Grigorov B., Arcanger F., Roingeard P., Darlix J.L., Muriaux D. (2006) Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol 359: 84862.
  • 20
    Nydegger S., Foti M., Derdowski A., Spearman P., Thali M. (2003) HIV-1 egress is gated through late endosomal membranes. Traffic 4: 90210.
  • 21
    Ono A., Freed E.O. (2004) Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J Virol 78: 155263.
  • 22
    Perlman M., Resh M.D. (2006) Identification of an intracellular trafficking and assembly pathway for HIV-1 gag. Traffic 7: 73145.
  • 23
    Sherer N.M., Lehmann M.J., Jimenez-Soto L.F., Ingmundson A., Horner S.M., Cicchetti G., Allen P. G., Pypaert M., Cunningham J. M., Mothes W. (2003) Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 4: 785801.
  • 24
    Resh M.D. (2005) Intracellular trafficking of HIV-1 Gag: how Gag interacts with cell membranes and makes viral particles. AIDS Rev 7: 8491.
  • 25
    Basyuk E., Galli T., Mougel M., Blanchard J.M., Sitbon M., Bertrand E. (2003) Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell 5: 16174.
  • 26
    Blot V., Perugi F., Gay B., Prevost M.C., Briant L., Tangy F., Abriel H., Staub O., Dokhelar M. C., Pique C. (2004) Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. J Cell Sci 117: 235767.
  • 27
    Sfakianos J.N., Hunter E. (2003) M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4: 67180.
  • 28
    Sfakianos J.N., LaCasse R.A., Hunter E. (2003) The M-PMV cytoplasmic targeting-retention signal directs nascent Gag polypeptides to a pericentriolar region of the cell. Traffic 4: 66070.
  • 29
    Ono A., Ablan S.D., Lockett S.J., Nagashima K., Freed E.O. (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 101: 14 88994.
  • 30
    Saad J.S., Miller J., Tai J., Kim A., Ghanam R.H., Summers M.F. (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103: 11 3649.
  • 31
    Rudner L., Nydegger S., Coren L.V., Nagashima K., Thali M., Ott D.E. (2005) Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling. J Virol 79: 405565.
  • 32
    Jouvenet N., Neil S.J., Bess C., Johnson M.C., Virgen C.A., Simon S.M., Bieniasz P. D. (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4: e435.
  • 33
    Welsch S., Keppler O.T., Habermann A., Allespach I., Krijnse-Locker J., Krausslich H.G. (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3: e36.
  • 34
    Deneka M., Pelchen-Matthews A., Byland R., Ruiz-Mateos E., Marsh M. (2007) In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177: 32941.
  • 35
    Camus G., Segura-Morales C., Molle D., Lopez-Verges S., Begon-Pescia C., Cazevieille C., Schu P., Bertrand E., Berlioz-Torrent C., Basyuk E. (2007) The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol Biol Cell 18: 3193203.
  • 36
    Batonick M., Favre M., Boge M., Spearman P., Honing S., Thali M. (2005) Interaction of HIV-1 Gag with the clathrin-associated adaptor AP-2. Virology 342: 190200.
  • 37
    Dong X., Li H., Derdowski A., Ding L., Burnett A., Chen X., Peters T. R., Dermody T. S., Woodruff E., Wang J. J., Spearman P. (2005) AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120: 66374.
  • 38
    Nakatsu F., Ohno H. (2003) Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 28: 41929.
  • 39
    Ohno H. (2006) Clathrin-associated adaptor protein complexes. J Cell Sci 119: 371921.
  • 40
    Murray J.L., Mavrakis M., McDonald N.J., Yilla M., Sheng J., Bellini W.J., Zhao L., Le Doux J. M., Shaw M. W., Luo C. C., Lippincott-Schwartz J., Sanchez A., Rubin D. H., Hodge T. W. (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79: 11 74251.
  • 41
    Alroy I., Tuvia S., Greener T., Gordon D., Barr H.M., Taglicht D., Mandil-Levin R., Ben-Avraham D., Konforty D., Nir A., Levius O., Bicoviski V., Dori M., Cohen S., Yaar L., Erez O., Propheta-Meiran O., Koskas M., Caspi-Bachar E., Alchanati I., Sela-Brown A., Moskowitz H., Tessmer U., Schubert U., Reiss Y. (2005) The trans-Golgi network-associated human ubiquitin-protein ligase POSH is essential for HIV type 1 production. Proc Natl Acad Sci USA 102: 147883.
  • 42
    Zimmerman C., Klein K.C., Kiser P.K., Singh A.R., Firestein B.L., Riba S.C., Lingappa J. R. (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415: 8892.
  • 43
    Dooher J.E., Schneider B.L., Reed J.C., Lingappa J.R. (2007) Host ABCE1 is at plasma membrane HIV assembly sites and its dissociation from Gag is linked to subsequent events of virus production. Traffic 8: 195211.
  • 44
    Chatel-Chaix L., Clement J.F., Martel C., Beriault V., Gatignol A., DesGroseillers L., Mouland A. J. (2004) Identification of Staufen in the human immunodeficiency virus type 1 Gag ribonucleoprotein complex and a role in generating infectious viral particles. Mol Cell Biol 24: 263748.
  • 45
    Chatel-Chaix L., Abrahamyan L., Frechina C., Mouland A.J., DesGroseillers L. (2007) The host protein Staufen1 participates in human immunodeficiency virus type 1 assembly in live cells by influencing pr55Gag multimerization. J Virol 81: 621630.
  • 46
    Dorfman T., Mammano F., Haseltine W.A., Gottlinger H.G. (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68: 168996.
  • 47
    Freed E.O., Martin M.A. (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69: 19849.
  • 48
    Yu X., Yuan X., Matsuda Z., Lee T.H., Essex M. (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66: 496671.
  • 49
    Freed E.O., Martin M.A. (1996) Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70: 34151.
  • 50
    Mammano F., Kondo E., Sodroski J., Bukovsky A., Gottlinger H.G. (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 69: 382430.
  • 51
    Murakami T., Freed E.O. (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and a-helix 2 of the gp41 cytoplasmic tail. J Virol 74: 354854.
  • 52
    Lodge R., Gottlinger H., Gabuzda D., Cohen E.A., Lemay G. (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 68: 485761.
  • 53
    Owens R.J., Dubay J.W., Hunter E., Compans R.W. (1991) Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 88: 398791.
  • 54
    Deschambeault J., Lalonde J.P., Cervantes-Acosta G., Lodge R., Cohen E.A., Lemay G. (1999) Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol 73: 50107.
  • 55
    Akari H., Fukumori T., Adachi A. (2000) Cell-dependent requirement of human immunodeficiency virus type 1 gp41 cytoplasmic tail for Env incorporation into virions. J Virol 74: 48913.
  • 56
    Murakami T., Freed E.O. (2000) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA 97: 3438.
  • 57
    Egan M.A., Carruth L.M., Rowell J.F., Yu X., Siliciano R.F. (1996) Human immunodeficiency virus type 1 envelope protein endocytosis mediated by a highly conserved intrinsic internalization signal in the cytoplasmic domain of gp41 is suppressed in the presence of the Pr55gag precursor protein. J Virol 70: 654756.
  • 58
    Bhattacharya J., Repik A., Clapham P.R. (2006) Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 80: 5292300.
  • 59
    Cosson P. (1996) Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15: 57838.
  • 60
    Weclewicz K., Ekstrom M., Kristensson K., Garoff H. (1998) Specific interactions between retrovirus Env and Gag proteins in rat neurons. J Virol 72: 283245.
  • 61
    Pal R., Mumbauer S., Hoke G.M., Takatsuki A., Sarngadharan M.G. (1991) Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 7: 70712.
  • 62
    Pfeiffer T., Zentgraf H., Freyaldenhoven B., Bosch V. (1997) Transfer of endoplasmic reticulum and Golgi retention signals to human immunodeficiency virus type 1 gp160 inhibits intracellular transport and proteolytic processing of viral glycoprotein but does not influence the cellular site of virus particle budding. J Gen Virol 78(Pt 7): 174553.
  • 63
    Salzwedel K., West J.T., Jr., Mulligan M.J., Hunter E. (1998) Retention of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum does not redirect virus assembly from the plasma membrane. J Virol 72: 752331.
  • 64
    Vincent M.J., Melsen L.R., Martin A.S., Compans R.W. (1999) Intracellular interaction of simian immunodeficiency virus Gag and Env proteins. J Virol 73: 813844.
  • 65
    Hermida-Matsumoto L., Resh M.D. (2000) Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 74: 86709.
  • 66
    Brown D.A., London E. (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275: 17 2214.
  • 67
    Helms J.B., Zurzolo C. (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5: 24754.
  • 68
    Simons K., Toomre D. (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 319.
  • 69
    Ono A., Freed E.O. (2005) Role of lipid rafts in virus replication. Adv Virus Res 64: 31158.
  • 70
    Aloia R.C., Tian H., Jensen F.C. (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90: 51815.
  • 71
    Brugger B., Glass B., Haberkant P., Leibrecht I., Wieland F.T., Krausslich H.G. (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103: 26416.
  • 72
    Nguyen D.H., Hildreth J.E. (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74: 326472.
  • 73
    Pickl W.F., Pimentel-Muinos F.X., Seed B. (2001) Lipid rafts and pseudotyping. J Virol 75: 717583.
  • 74
    Rousso I., Mixon M.B., Chen B.K., Kim P.S. (2000) Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci USA 97: 13 5235.
  • 75
    Bhattacharya J., Peters P.J., Clapham P.R. (2004) Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles. J Virol 78: 55006.
  • 76
    Chan W.E., Lin H.H., Chen S.S. (2005) Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J Virol 79: 837487.
  • 77
    Halwani R., Khorchid A., Cen S., Kleiman L. (2003) Rapid localization of Gag/GagPol complexes to detergent-resistant membrane during the assembly of human immunodeficiency virus type 1. J Virol 77: 397384.
  • 78
    Holm K., Weclewicz K., Hewson R., Suomalainen M. (2003) Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55gag associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J Virol 77: 480517.
  • 79
    Lindwasser O.W., Resh M.D. (2001) Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol 75: 791324.
  • 80
    Ono A., Freed E.O. (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 98: 13 92530.
  • 81
    Lindwasser O.W., Resh M.D. (2002) Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc Natl Acad Sci USA 99: 13 03742.
  • 82
    Ono A., Waheed A.A., Freed E.O. (2007) Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 360: 2735.
  • 83
    Hemler M.E. (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6: 80111.
  • 84
    Martin F., Roth D.M., Jans D.A., Pouton C.W., Partridge L.J., Monk P.N., Moseley G. W. (2005) Tetraspanins in viral infections: a fundamental role in viral biology J Virol 79: 1083951.
  • 85
    Jolly C., Sattentau Q.J. (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81: 787384.
  • 86
    Nydegger S., Khurana S., Krementsov D.N., Foti M., Thali M. (2006) Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 173: 795807.
  • 87
    Gottlinger H.G., Sodroski J.G., Haseltine W.A. (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86: 57815.
  • 88
    Kohl N.E., Emini E.A., Schleif W.A., Davis L.J., Heimbach J.C., Dixon R.A., Scolnick E. M., Sigal I. S. (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci USA 85: 468690.
  • 89
    Peng C., Ho B.K., Chang T.W., Chang N.T. (1989) Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J Virol 63: 25506.
  • 90
    Wiegers K., Rutter G., Kottler H., Tessmer U., Hohenberg H., Krausslich H.G. (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 72: 284654.
  • 91
    Wyma D.J., Kotov A., Aiken C. (2000) Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. J Virol 74: 93817.
  • 92
    Brody B.A., Rhee S.S., Hunter E. (1994) Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 68: 46207.
  • 93
    Ragheb J.A., Anderson W.F. (1994) pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: implications for the role of the R peptide and p12E TM in viral entry. J Virol 68: 322031.
  • 94
    Rein A., Mirro J., Haynes J.G., Ernst S.M., Nagashima K. (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol 68: 177381.
  • 95
    Kim F.J., Manel N., Boublik Y., Battini J.L., Sitbon M. (2003) Human T-cell leukemia virus type 1 envelope-mediated syncytium formation can be activated in resistant Mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain. J Virol 77: 9639.
  • 96
    Ritter G.D., Jr., Mulligan M.J., Lydy S.L., Compans R.W. (1993) Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmic domain. Virology 197: 25564.
  • 97
    Spies C.P., Compans R.W. (1994) Effects of cytoplasmic domain length on cell surface expression and syncytium-forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology 203: 819.
  • 98
    Dubay J.W., Roberts S.J., Hahn B.H., Hunter E. (1992) Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 66: 661625.
  • 99
    Wilk T., Pfeiffer T., Bosch V. (1992) Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 189: 16777.
  • 100
    Waheed A.A., Ablan S.D., Roser J.D., Sowder R.C., Schaffner C.P., Chertova E., Freed E. O. (2007) HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proc Natl Acad Sci USA 104: 846771.
  • 101
    Jiang J., Aiken C. (2006) Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages. Virology 346: 4608.
  • 102
    Murakami T., Ablan S., Freed E.O., Tanaka Y. (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78: 102631.
  • 103
    Wyma D.J., Jiang J., Shi J., Zhou J., Lineberger J.E., Miller M.D., Aiken C. (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78: 342935.
  • 104
    Jiang J., Aiken C. (2007) Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 81: 999910008.
  • 105
    Kol N., Shi Y., Tsvitov M., Barlam D., Shneck R.Z., Kay M.S., Rousso I. (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92: 177783.