SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Suzuki S. (1975) FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn J Exp Med 45: 473478.
  • 2
    Gardner M.B., Rasheed S., Pal B.K., Estes J.D., O'Brien S.J. (1980) Akvr-1, a dominant murine leukemia virus restriction gene, is polymorphic in leukemia-prone wild mice. Proc Natl Acad Sci USA 77: 531535.
  • 3
    Rasheed S., Gardner M.B. (1983) Resistance to fibroblasts and hematopoietic cells to ecotropic murine leukemia virus infection; an Akvr-1R gene effect. Int J Cancer 31: 491496.
  • 4
    Hartley J.W., Rowe W.P., Huebner R.J. (1970) Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol 5: 221225.
  • 5
    Pincus T., Hartley J.W., Rowe W.P. (1971) A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J Exp Med 133: 12191233.
  • 6
    Ikeda H., Odaka T. (1983) Cellular expression of murine leukemia virus gp70-related antigen on thymocytes of uninfected mice correlates with Fv-4 gene-controlled resistance to Friend leukemia virus infection. Virology 128: 127139.
  • 7
    Takeda A., Matano T. (2007) Inhibition of infectious murine leukemia virus production by Fv-4 env gene products exerting dominant negative effect on viral envelope glycoprotein. Microbes Infect. 9:15906.
  • 8
    Goff S.P. (2004) Genetic control of retrovirus susceptibility in mammalian cells. Annu Rev Genet 38: 6185.
  • 9
    Rein A., Kashmiri S.V., Bassin R.H., Gerwin B.L., Duran-Troise G. (1976) Phenotypic mixing between N- and B-tropic murine leukemia viruses: infectious particles with dual sensitivity to Fv-1 restriction. Cell 7: 373379.
  • 10
    Gautsch J.W., Elder J.H., Schindler J., Jensen F.C., Lerner R.A. (1978) Structural markers on core protein p30 of murine leukemia virus: functional correlation with Fv-1 tropism. Proc Natl Acad Sci USA 75: 41704174.
  • 11
    Kozak C.A., Chakraborti A. (1996) Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225: 300305.
  • 12
    Towers G., Bock M., Martin S., Takeuchi Y., Stoye J.P., Danos O. (2000) A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci USA 97: 12 29512 299.
  • 13
    Besnier C., Takeuchi Y., Towers G. (2002) Restriction of lentivirus in monkeys. Proc Natl Acad Sci USA 99: 11 92011 925.
  • 14
    Cowan S., Hatziioannou T., Cunningham T., Muesing M.A., Gottlinger H.G., Bieniasz P.D. (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA 99: 11 91411 919.
  • 15
    Munk C., Brandt S.M., Lucero G., Landau N.R. (2002) A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA 99: 13 84313 848.
  • 16
    Stremlau M., Owens C.M., Perron M.J., Kiessling M., Autissier P., Sodroski J. (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427: 848853.
  • 17
    Sayah D.M., Sokolskaja E., Berthoux L., Luban J. (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430: 569573.
  • 18
    Keckesova Z., Ylinen L.M., Towers G.J. (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 101: 10 78010 785.
  • 19
    Perron M.J., Stremlau M., Song B., Ulm W., Mulligan R.C., Sodroski J. (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 101: 11 82711 832.
  • 20
    Si Z., Vandegraaff N., O'Huigin C., Song B., Yuan W., Xu C., Perron M., Li X., Marasco W.A., Engelman A., et al. (2006) Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection. Proc Natl Acad Sci USA 103: 74547459.
  • 21
    Song B., Javanbakht H., Perron M., Park D.H., Stremlau M., Sodroski J. (2005) Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. J Virol 79: 39303937.
  • 22
    Yap M.W., Nisole S., Lynch C., Stoye J.P. (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101: 10 78610 791.
  • 23
    Ylinen L.M., Keckesova Z., Wilson S.J., Ranasinghe S., Towers G.J. (2005) Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 79: 11 58011 587.
  • 24
    Hatziioannou T., Perez-Caballero D., Yang A., Cowan S., Bieniasz P.D. (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 101: 10 77410 779.
  • 25
    Mische C.C., Javanbakht H., Song B., Diaz-Griffero F., Stremlau M., Strack B., Si Z., Sodroski J. (2005) Retroviral restriction factor TRIM5alpha is a trimer. J Virol 79: 14 44614 450.
  • 26
    Javanbakht H., Yuan W., Yeung D.F., Song B., Diaz-Griffero F., Li Y., Li X., Stremlau M., Sodroski J. (2006) Characterization of TRIM5alpha trimerization and its contribution to human immunodeficiency virus capsid binding. Virology 353: 234246.
  • 27
    Nisole S., Stoye J.P., Saib A. (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3: 799808.
  • 28
    Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S., Cainarca S., et al. (2001) The tripartite motif family identifies cell compartments. Embo J 20: 21402151.
  • 29
    Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D.J., Sundquist W.I., Sodroski J. (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103: 55145519.
  • 30
    Perez-Caballero D., Hatziioannou T., Yang A., Cowan S., Bieniasz P.D. (2005) Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 79: 89698978.
  • 31
    Javanbakht H., Diaz-Griffero F., Stremlau M., Si Z., Sodroski J. (2005) The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 280: 26 93326 940.
  • 32
    Perez-Caballero D., Hatziioannou T., Zhang F., Cowan S., Bieniasz P.D. (2005) Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol 79: 15 56715 572.
  • 33
    Schwartz O., Marechal V., Friguet B., Arenzana-Seisdedos F., Heard J.M. (1998) Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J Virol 72: 38453850.
  • 34
    Berthoux L., Sebastian S., Sokolskaja E., Luban J. (2004) Lv1 inhibition of human immunodeficiency virus type 1 is counteracted by factors that stimulate synthesis or nuclear translocation of viral cDNA. J Virol 78: 11 73911 750.
  • 35
    Wu X., Anderson J.L., Campbell E.M., Joseph A.M., Hope T.J. (2006) Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA 103: 74657470.
  • 36
    Sakuma R., Noser J.A., Ohmine S., Ikeda Y. (2007) Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 13: 631635.
  • 37
    Fisher A.G., Ensoli B., Ivanoff L., Chamberlain M., Petteway S., Ratner L., Gallo R.C., Wong-Staal F. (1987) The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 237: 888893.
  • 38
    Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M.A. (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328: 728730.
  • 39
    Akari H., Sakuragi J., Takebe Y., Tomonaga K., Kawamura M., Fukasawa M., Miura T., Shinjo T., Hayami M. (1992) Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells. Arch Virol 123: 157167.
  • 40
    Blanc D., Patience C., Schulz T.F., Weiss R., Spire B. (1993) Transcomplementation of VIF- HIV-1 mutants in CEM cells suggests that VIF affects late steps of the viral life cycle. Virology 193: 186192.
  • 41
    Borman A.M., Quillent C., Charneau P., Dauguet C., Clavel F. (1995) Human immunodeficiency virus type 1 Vif- mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. J Virol 69: 20582067.
  • 42
    Fan L., Peden K. (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190: 1929.
  • 43
    Gabuzda D.H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W.A., Sodroski J. (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66: 64896495.
  • 44
    Sakai H., Shibata R., Sakuragi J., Sakuragi S., Kawamura M., Adachi A. (1993) Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol 67: 16631666.
  • 45
    Von Schwedler U., Song J., Aiken C., Trono D. (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 67: 49454955.
  • 46
    Sheehy A.M., Gaddis N.C., Choi J.D., Malim M.H. (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418: 646650.
  • 47
    Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X.F. (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302: 10561060.
  • 48
    Harris R.S., Bishop K.N., Sheehy A.M., Craig H.M., Petersen-Mahrt S.K., Watt I.N., Neuberger M.S., Malim M.H. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113: 803809.
  • 49
    Lecossier D., Bouchonnet F., Clavel F., Hance A.J. (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300: 1112.
  • 50
    Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99103.
  • 51
    Mariani R., Chen D., Schrofelbauer B., Navarro F., Konig R., Bollman B., Munk C., Nymark-McMahon H., Landau N.R. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114: 2131.
  • 52
    Yu Q., Konig R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J.M., Landau N.R. (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11: 435442.
  • 53
    Zhang H., Yang B., Pomerantz R.J., Zhang C., Arunachalam S.C., Gao L. (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424: 9498.
  • 54
    Guo F., Cen S., Niu M., Saadatmand J., Kleiman L. (2006) Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80: 11 71011 722.
  • 55
    Guo F., Cen S., Niu M., Yang Y., Gorelick R.J., Kleiman L. (2007) The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. J Virol 81: 11 32211 331.
  • 56
    Mbisa J.L., Barr R., Thomas J.A., Vandegraaff N., Dorweiler I.J., Svarovskaia E.S., Brown W.L., Mansky L.M., Gorelick R.J., Harris R.S., et al. (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81: 70997110.
  • 57
    Li X.Y., Guo F., Zhang L., Kleiman L., Cen S. (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282: 32 06532 074.
  • 58
    Luo K., Wang T., Liu B., Tian C., Xiao Z., Kappes J., Yu X.F. (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81: 72387248.
  • 59
    Bishop K.N., Holmes R.K., Sheehy A.M., Davidson N.O., Cho S.J., Malim M.H. (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14: 13921396.
  • 60
    Wiegand H.L., Doehle B.P., Bogerd H.P., Cullen B.R. (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. Embo J 23: 24512458.
  • 61
    Cullen B.R. (2006) Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80: 10671076.
  • 62
    Bishop K.N., Holmes R.K., Sheehy A.M., Malim M.H. (2004) APOBEC-mediated editing of viral RNA. Science 305: 645.
  • 63
    Simon J.H., Miller D.L., Fouchier R.A., Soares M.A., Peden K.W., Malim M.H. (1998) The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. Embo J 17: 12591267.
  • 64
    Bogerd H.P., Doehle B.P., Wiegand H.L., Cullen B.R. (2004) A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 101: 37703774.
  • 65
    Mangeat B., Turelli P., Liao S., Trono D. (2004) A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279: 14 48114 483.
  • 66
    Schrofelbauer B., Chen D., Landau N.R. (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA 101: 39273932.
  • 67
    Xu H., Svarovskaia E.S., Barr R., Zhang Y., Khan M.A., Strebel K., Pathak V.K. (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci USA 101: 56525657.
  • 68
    Takeuchi H., Kao S., Miyagi E., Khan M.A., Buckler-White A., Plishka R., Strebel K. (2005) Production of infectious SIVagm from human cells requires functional inactivation but not viral exclusion of human APOBEC3G. J Biol Chem 280: 375382.
  • 69
    Harris R.S., Liddament M.T. (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4: 868877.
  • 70
    Liddament M.T., Brown W.L., Schumacher A.J., Harris R.S. (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14: 13851391.
  • 71
    Zheng Y.H., Irwin D., Kurosu T., Tokunaga K., Sata T., Peterlin B.M. (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78: 60736076.
  • 72
    Doehle B.P., Schafer A., Cullen B.R. (2005) Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology 339: 281288.
  • 73
    Rose K.M., Marin M., Kozak S.L., Kabat D. (2005) Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B, 3F, and 3G. AIDS Res Hum Retroviruses 21: 611619.
  • 74
    Bishop K.N., Holmes R.K., Malim M.H. (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80: 84508458.
  • 75
    Holmes R.K., Koning F.A., Bishop K.N., Malim M.H. (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem 282: 25872595.
  • 76
    Newman E.N., Holmes R.K., Craig H.M., Klein K.C., Lingappa J.R., Malim M.H., Sheehy A.M. (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15: 166170.
  • 77
    Shindo K., Takaori-Kondo A., Kobayashi M., Abudu A., Fukunaga K., Uchiyama T. (2003) The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem 278: 44 41244 416.
  • 78
    Iwatani Y., Chan D.S., Wang F., Maynard K.S., Sugiura W., Gronenborn A.M., Rouzina I., Williams M.C., Musier-Forsyth K., Levin J.G. (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res. 35(21):7096-108
  • 79
    Opi S., Takeuchi H., Kao S., Khan M.A., Miyagi E., Goila-Gaur R., Iwatani Y., Levin J.G., Strebel K. (2006) Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 80: 46734682.
  • 80
    Miyagi E., Opi S., Takeuchi H., Khan M., Goila-Gaur R., Kao S., Strebel K. (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81: 13 34613 353.
  • 81
    Handschumacher R.E., Harding M.W., Rice J., Drugge R.J., Speicher D.W. (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226: 544547.
  • 82
    Fischer G., Wittmann-Liebold B., Lang K., Kiefhaber T., Schmid F.X. (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476478.
  • 83
    Takahashi N., Hayano T., Suzuki M. (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337: 473475.
  • 84
    Luban J., Bossolt K.L., Franke E.K., Kalpana G.V., Goff S.P. (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73: 10671078.
  • 85
    Franke E.K., Yuan H.E., Luban J. (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372: 359362.
  • 86
    Gamble T.R., Vajdos F.F., Yoo S., Worthylake D.K., Houseweart M., Sundquist W.I., Hill C.P. (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87: 12851294.
  • 87
    Zhao Y., Chen Y., Schutkowski M., Fischer G., Ke H. (1997) Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity. Structure 5: 139146.
  • 88
    Bosco D.A., Eisenmesser E.Z., Pochapsky S., Sundquist W.I., Kern D. (2002) Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci USA 99: 52475252.
  • 89
    Braaten D., Aberham C., Franke E.K., Yin L., Phares W., Luban J. (1996) Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A. J Virol 70: 51705176.
  • 90
    Braaten D., Franke E.K., Luban J. (1996) Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol 70: 42204227.
  • 91
    Braaten D., Luban J. (2001) Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. Embo J 20: 13001309.
  • 92
    Franke E.K., Luban J. (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction. Virology 222: 279282.
  • 93
    Hatziioannou T., Perez-Caballero D., Cowan S., Bieniasz P.D. (2005) Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol 79: 176183.
  • 94
    Sokolskaja E., Sayah D.M., Luban J. (2004) Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 78: 12 80012 808.
  • 95
    Thali M., Bukovsky A., Kondo E., Rosenwirth B., Walsh C.T., Sodroski J., Gottlinger H.G. (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372: 363365.
  • 96
    Ott D.E., Coren L.V., Johnson D.G., Sowder R.C., 2nd, Arthur L.O., Henderson L.E. (1995) Analysis and localization of cyclophilin A found in the virions of human immunodeficiency virus type 1 MN strain. AIDS Res Hum Retroviruses 11: 10031006.
  • 97
    Ackerson B., Rey O., Canon J., Krogstad P. (1998) Cells with high cyclophilin A content support replication of human immunodeficiency virus type 1 Gag mutants with decreased ability to incorporate cyclophilin A. J Virol 72: 303308.
  • 98
    Bukovsky A.A., Weimann A., Accola M.A., Gottlinger H.G. (1997) Transfer of the HIV-1 cyclophilin-binding site to simian immunodeficiency virus from Macaca mulatta can confer both cyclosporin sensitivity and cyclosporin dependence. Proc Natl Acad Sci USA 94: 10 94310 948.
  • 99
    Colgan J., Yuan H.E., Franke E.K., Luban J. (1996) Binding of the human immunodeficiency virus type 1 Gag polyprotein to cyclophilin A is mediated by the central region of capsid and requires Gag dimerization. J Virol 70: 42994310.
  • 100
    Javanbakht H., Diaz-Griffero F., Yuan W., Yeung D.F., Li X., Song B., Sodroski J. (2007) The ability of multimerized cyclophilin A to restrict retrovirus infection. Virology 367: 1929.
  • 101
    Towers G.J., Hatziioannou T., Cowan S., Goff S.P., Luban J., Bieniasz P.D. (2003) Cyclophilin A modulates the sensitivity of H.I.V-1 to host restriction factors. Nat Med 9: 11381143.
  • 102
    Kootstra N.A., Munk C., Tonnu N., Landau N.R., Verma I.M. (2003) Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA 100: 12981303.
  • 103
    Kamada K., Igarashi T., Martin M.A., Khamsri B., Hatcho K., Yamashita T., Fujita M., Uchiyama T., Adachi A. (2006) Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc Natl Acad Sci USA 103: 16 95916 964.
  • 104
    Hatziioannou T., Princiotta M., Piatak M., Jr., Yuan F., Zhang F., Lifson J.D., Bieniasz P.D. (2006) Generation of simian-tropic HIV-1 by restriction factor evasion. Science 314: 95.
  • 105
    Shibata R., Kawamura M., Sakai H., Hayami M., Ishimoto A., Adachi A. (1991) Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J Virol 65: 35143520.
  • 106
    Shibata R., Sakai H., Kawamura M., Tokunaga K., Adachi A. (1995) Early replication block of human immunodeficiency virus type 1 in monkey cells. J Gen Virol 76(Pt 11): 27232730.
  • 107
    Dorfman T., Gottlinger H.G. (1996) The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J Virol 70: 57515757.
  • 108
    Owens C.M., Yang P.C., Gottlinger H., Sodroski J. (2003) Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 77: 726731.
  • 109
    Hatziioannou T., Cowan S., Von Schwedler U.K., Sundquist W.I., Bieniasz P.D. (2004) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78: 60056012.
  • 110
    Owens C.M., Song B., Perron M.J., Yang P.C., Stremlau M., Sodroski J. (2004) Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 78: 54235437.
  • 111
    Ikeda Y., Ylinen L.M., Kahar-Bador M., Towers G.J. (2004) Influence of gag on human immunodeficiency virus type 1 species-specific tropism. J Virol 78: 11 81611 822.
  • 112
    Takeuchi H., Buckler-White A., Goila-Gaur R., Miyagi E., Khan M.A., Opi S., Kao S., Sokolskaja E., Pertel T., Luban J., et al. (2007) Vif counteracts a cyclophilin A-imposed inhibition of simian immunodeficiency viruses in human cells. J Virol 81: 80808090.
  • 113
    Himathongkham S., Luciw P.A. (1996) Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology 219: 485488.
  • 114
    Hofmann W., Schubert D., LaBonte J., Munson L., Gibson S., Scammell J., Ferrigno P., Sodroski J. (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73: 10 02010 028.
  • 115
    Hatziioannou T., Cowan S., Goff S.P., Bieniasz P.D., Towers G.J. (2003) Restriction of multiple divergent retroviruses by Lv1 and Ref1. Embo J 22: 385394.
  • 116
    Braaten D., Franke E.K., Luban J. (1996) Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol 70: 35513560.
  • 117
    Keckesova Z., Ylinen L.M., Towers G.J. (2006) Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol 80: 46834690.
  • 118
    Stremlau M., Song B., Javanbakht H., Perron M., Sodroski J. (2006) Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology 351: 112120.
  • 119
    Sokolskaja E., Berthoux L., Luban J. (2006) Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol 80: 28552862.
  • 120
    Berthoux L., Sebastian S., Sokolskaja E., Luban J. (2005) Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci USA 102: 14 84914 853.