• 1
    Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 2803.
  • 2
    Gheysen D., Jacobs E., De Foresta F., Thiriart C., Francotte M., Thines D., De Wilde M. (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59: 10312.
  • 3
    Morikawa Y. (2001) HIV capsid assembly. Curr HIV Res 1: 114
  • 4
    Park J., Morrow C.D. (1992) The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into virus-like particles. J Virol 66: 630413.
  • 5
    Smith A.J., Srinivasakumar N., Hammarskjold M.L., Rekosh D. (1993) Requirements for incorporation of Pr160gag-pol from human immunodeficiency virus type 1 into virus-like particles. J Virol 67: 226675.
  • 6
    Mervis R.J., Ahmad N., Lillehoj E.P., Raum M.G., Salazar F.H., Chan H.W., Venkatesan S. (1988) The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J Virol 62: 39934002.
  • 7
    Gottlinger H.G., Sodroski J.G., Haseltine W.A. (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86: 57815.
  • 8
    Rose J.R., Babe L.M., Craik, C.S. (1995) Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol 69: 27518.
  • 9
    Kaplan A.H., Manchester M., Swanstrom R. (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68: 67826.
  • 10
    Karacostas V., Wolffe E.J., Nagashima K., Gonda M.A., Moss B. (1993) Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193: 66171.
  • 11
    Krausslich H.G. (1991) Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci USA 88: 321317.
  • 12
    Park J., Morrow C.D. (1991) Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J Virol 65: 51117.
  • 13
    Shehu-Xhilaga M., Crowe S.M., Mak J. (2001) Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75: 183441.
  • 14
    Louis J.M., Clore G.M., Gronenborn A.M. (1999) Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6: 86875.
  • 15
    Tang C., Louis J.M., Aniana A., Suh J-Y., Clore G.M. (2008) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455: 6936.
  • 16
    Suyama M., Daikoku E., Goto T., Sano K., Morikawa Y. (2009) Reactivation from latency displays HIV particle budding at plasma membrane, accompanying CD44 upregulation and recruitment. Retrovirology 6: 63.
  • 17
    Adachi A., Gendelman H.E., Koenig S., Folks T., Willey R., Rabson A., Martin M.A. (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 28491.
  • 18
    Huang M., Orenstein J.M., Martin M.A., Freed E.O. (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69: 681018.
  • 19
    Tsunetsugu-Yokota Y., Ishige M., Murakami M. (2007) Oral attenuated Salmonella enterica serovar Typhimurium vaccine expressing codon-optimized HIV type 1 Gag enhanced intestinal immunity in mice. AIDS Res Hum Retroviruses 23: 278286.
  • 20
    Feige J.N., Sage D., Wahli W., Desvergne B., Gelman L. (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68: 518.
  • 21
    Demirov D.G., Ono A., Orenstein J.M., Freed E.O. (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci USA 99: 95560.
  • 22
    Garrus J.E., Von Schwedler U.K., Pornillos O.W., Morham S.G., Zavitz K.H., Wang H.E., Wettstein D.A., Stray K.M., Cote M., Rich R.L., Myszka D.G., Sundquist W.I. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107: 5565.
  • 23
    Strack B., Calistri A., Craig S., Popova E., Gottlinger H.G. (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114: 68999.
  • 24
    VerPlank L., Bouamr F., LaGrassa T.J., Agresta B., Kikonyogo A., Leis J., Carter C.A. (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci USA 98: 77249.
  • 25
    Von Schwedler U.K., Stuchell M., Muller B., Ward D.M., Chung H.Y., Morita E., Wang H.E., Davis T., He G.P., Cimbora D.M., Scott A., Krausslich H.G., Kaplan J., Morham S.G., Sundquist W.I. (2003) The protein network of HIV budding. Cell 114: 70113.
  • 26
    Kondo E., Gottlinger H.G. (1996) A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol 70: 15964.
  • 27
    Lu Y.L., Bennett R.P., Wills J.W., Gorelick R., Ratner L. (1995) A leucine triplet repeat sequence (LXX)4 in p6gag is important for Vpr incorporation into human immunodeficiency virus type 1 particles. J Virol 69: 68739.
  • 28
    Jouvenet N., Neil S.J., Bess C., Johnson M.C., Virgen C.A., Simon S.M., Bieniasz P.D. (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4: e435.
  • 29
    Kawada S., Goto T., Haraguchi H., Ono A., Morikawa Y. (2008) Dominant negative inhibition of human immunodeficiency virus particle production by the nonmyristoylated form of gag. J Virol 82: 438499.
  • 30
    Hogue I.B., Hoppe A., Ono A. (2009) Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding. J Virol 83: 732236.
  • 31
    Holm K., Weclewicz K., Hewson R., Suomalainen M. (2003) Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55(gag) associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J Virol 77: 480517.
  • 32
    Lindwasser O.W., Resh M.D. (2001) Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol 75: 791324.
  • 33
    Nguyen D.H., Hildreth J.E. (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74: 326472.
  • 34
    Ono A., Freed E.O. (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 98: 13,92530.
  • 35
    Pettit S.C., Moody M.D., Wehbie R.S., Kaplan A.H., Nantermet P.V., Klein C.A., Swanstrom R. (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68: 801727.
  • 36
    Tritch R.J., Cheng Y.E., Yin F.H., Erickson-Viitanen S. (1991) Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 gag polyprotein. J Virol 65: 92230.
  • 37
    Li H., Jun D., Ding L., Spearman P. (2007) Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J Virol 81: 12,899910
  • 38
    Tritel M., Resh, M.D. (2000) Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J Virol 74: 584555.