SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Bakaletz L.O. (2004) Developing animal models for polymicrobial diseases. Nat Rev Microbiol 2: 55268.
  • 2
    Kroes I., Lepp P.W., Relman D.A. (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96: 14,547–52.
  • 3
    Mylonakis E., Casadevall A., Ausubel F.M. (2007) Exploiting amoeboid and nonvertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3: e101.
  • 4
    Darby C., Cosma C.L., Thomas J.H., Manoil C. (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96: 15,202–7.
  • 5
    Mahajan-Miklos S., Tan M.W., Rahme L.G., Ausubel F.M. (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 4756.
  • 6
    Tan M.W., Ausubel F.M. (2000) Caenorhabditis elegans: a modelgenetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3 : 2934.
  • 7
    Aballay A., Ausubel F.M. (2001) Programmed cell death mediated byced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 98 : 27359.
  • 8
    Aballay A., Yorgey P., Ausubel F.M. (2000) Salmonella Typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10 : 153942.
  • 9
    Labrousse A., Chauvet S., Couillault C., Kurz C.L., Ewbank J.J. (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10 : 154345.
  • 10
    Garsin D.A., Sifri C.D., Mylonakis E., Qin X., Singh K.V., Murray B.E., Calderwood S.B., Ausubel F.M. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98 : 10,892–97.
  • 11
    Sifri C.D., Begun J., Ausubel F.M., Calderwood S.B. (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71 : 220817.
  • 12
    Peleg A.Y., Tampakakis E., Fuchs B.B., Eliopoulos G.M., Moellering R.C. Jr., Mylonakis E. (2008) Prokaryote–eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105 : 14,585–90.
  • 13
    Hodgkin J., Kuwabara P.E., Corneliussen B. (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10 : 161518.
  • 14
    O’Rourke D., Baban D., Demidova M., Mott R., Hodgkin J. (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16 : 100516.
  • 15
    Vigneshkumar B., Pandian S.K., Balamurugan K. (2012) Regulation of Caenorhabditis elegans and Pseudomonas aeruginosa machinery during interactions. Arch Microbiol. 194 : 22942.
  • 16
    JebaMercy G., Pandian S.K., Balamurugan K. (2011) Changes in Caenorhabditis elegans life-span and selective innate immune genes during Staphylococcus aureus infection. Folia Microbiol 56 : 37380.
  • 17
    Sivamaruthi B., Ganguli A., Kumar M., Bhaviya S., Pandian S.K., Balamurugan K. (2011) Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol 51 : 54049.
  • 18
    Griffith D.P., Musher D.M., Itin C. (1976) Urease: The primary cause of infection-induced urinary stones. Invest Urol 13 : 34650.
  • 19
    Endimiani A., Luzzaro F., Brigante G., Perilli M., Lombardi G., Amicosante G., Rossolini G.M., Toniolo A. (2005) Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother 49 : 259805.
  • 20
    Durai D., Pandian S.K., Balamurugan K. (2011) Establishment of a Caenorhabditis elegans infection model for Vibrio alginolyticus. J Basic Microbiol 51 : 24352.
  • 21
    Morse D.P., Bass B.L. (1999) Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. Proc Natl Acad Sci USA 96 : 604853.
  • 22
    Keston A.S., Brandt R. (1965) The fluorometric analysis of ultramicro quantities of hydrogenperoxide. Anal Biochem 11 : 15.
  • 23
    Wolff S.P. (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233 : 18289.
  • 24
    Shapira M., Hamlin B.J., Rong J., Chen K., Ronen M., Tan M.W. (2006) A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci USA 103 : 14,086–91.
  • 25
    Chavez V., Mohri-Shiomi A., Garsin D.A. (2009) Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect Immun 77 : 4983–89.
  • 26
    Alper S., McBride S.J., Lackford B., Freedman J.H., Schwartz1 D.A. (2007) Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 27 : 554453.
  • 27
    Bork P., Beckmann G. (1993) The CUB domain A widespread module in developmentally regulated proteins. J Mol Biol 231: 53945.
  • 28
    Kerry S., TeKippe M., Gaddis N.C., Aballay A. (2006) GATA transcription factor required for immunity to bacterial and fungal pathogens. PLoS ONE 1 : e77.
  • 29
    Mallo G.V., Kurz C.L., Couillault C., Pujol N., Granjeaud S., Kohara Y. (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12 : 120914.
  • 30
    Li J., Ebata A., Dong Y., Rizki G., Iwata T., Lee S.S. (2008) Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol e6 : 187085.
  • 31
    Bolz D.D., Tenor J.L., Aballay A. (2010) A conserved PMK-1/p38 MAPK is required in C. elegans tissue specific immune response to Y. pestis infection. J Biol Chem 285 : 10,832–40.
  • 32
    Shivers R.P., Pagano D.J., Kooistra T., Richardson C.E., Reddy K.C. (2010) Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 6 : e1,000,892.
  • 33
    Nathoo A.N., Moeller R.A., Westlund B.A., Hart A.C. (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98 : 14,000–5.
  • 34
    Pujol N., Cypowyj S., Ziegler K., Millet A., Astrain A., Goncharov A., Jin Y., Chisholm A.D., Ewbank J.J. (2008) Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 18 : 4819.
  • 35
    Franc N.C., White K. (2000) Innate recognition systems in insect immunity and development: New approaches in Drosophila. Microbes Infect 2 : 24350.
  • 36
    Gartner A., Milstein S., Ahmed S., Hodgkin J., Hengartner, M.O. (2000) A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5 : 43543.
  • 37
    Plenefisch J., Xiao H., Mei B., Geng J., Komuniecki P.R., Komuniecki R.W. (2000) Secretion of a novel class of iFABPs in nematodes: coordinate use of the Ascaris/Caenorhabditis model systems. Mol Biochem Parasitol 105 : 22336.
  • 38
    Bogaerts A., Beets I., Schoofs L., Verleyen P. (2010) Antimicrobial peptides in Caenorhabditis elegans. Invertebrate Survival Journal 7 : 4552.
  • 39
    Rahman M.M., Stuchlick O., El-Karim E.G., Stuart R., Kipreos E.T., Wells L. (2010) Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. Aging 2 : 67890.
  • 40
    Ogg S., Paradis S., Gottlieb S., Patterson G.I., Lee L., Tissenbaum H.A., Ruvkun G.B. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389 : 99499.
  • 41
    Garigan D., Hsu A.L., Fraser A.G., Kamath R.S., Ahringer J., Kenyon C. (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161: 110112.
  • 42
    Kwon E.S., Narasimhan S.D., Yen K., Tissenbaum H.A. (2010) A new DAF-16 isoform regulates longevity. Nature 466 : 49802.
  • 43
    Drickamer K. (1993) Evolution of Ca (2+)-dependent animal lectins. Prog Nucleic Acid Res Mol Biol 45 : 20732.