SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    ) Wiegandt, H. Gangliosides. In “Glycolipids,” ed. H.Wiegandt, pp. 199260 (1985). Elsevier Science Publishers, B. V., Amsterdam .
  • 2
    ) Suzuki, K. The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. J. Neurochem., 12, 629638 (1965).
  • 3
    ) Portoukalian, J., Zwingelstein, G. and Dore, J. F. Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur. J. Biochem., 94, 1923 (1979).
  • 4
    ) Carubia, J. M., Yu, R. K., Macala, L. J., Kirkwood, J. M. and Varga, J. M. Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun., 120, 500504 (1984).
  • 5
    ) Cheung, N. K., Sarrinen, U. M., Neely, J. E., Landmeier, B., Donovan, D. and Coccia, P. F. Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res., 45, 26422649 (1985).
  • 6
    ) Fredman, P., von Hoist, H., Collins, V. P., Ammar, A., Dellheden, B., Wahren, B., Granholm, L. and Svennerholm, L. Potential ganglioside antigens associated with human gliomas. Neural. Res., 8, 123126 (1986).
  • 7
    ) Chang, H. R., Cordon-Cardo, C., Houghton, A. N., Cheung, N. K. and Brennan, M. F. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer (Phila.), 70, 633638 (1992).
  • 8
    ) Yuyama, Y., Dohi, T., Morita, H., Furukawa, K. and Oshima, M. Enhanced expression of GM2/GD2 synthase mRNA in human gastrointestinal cancer. Cancer, 75, 12731280 (1995).
  • 9
    ) Dohi, T., Hanai, N., Yamaguchi, K. and Oshima, M. Localization of UDP-GalNAc:NeuAc α 2,3Gal-R β1,4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human stomach. Enzymatic synthesis of a fundic gland-specific ganglioside and GM2. J. Biol. Chem., 266, 2403824043 (1991).
  • 10
    ) Merritt, W. D., Sztein, M. B. and Reaman, G. H. Detection of GD3 ganglioside in childhood acute lymphoblastic leukemia with monoclonal antibody to GD3: restriction to immunophenotypically defined T-cell disease. J. Cell. Biochem., 37, 1119 (1988).
  • 11
    ) Furukawa, K., Akagi, T., Nagata, Y., Yamada, Y., Shimotohno, K., Cheung, N. K., Shiku, H. and Furukawa, K. GD2 ganglioside on human T-lymphotropic virus type I-infected T cells: possible activation of β–1,4–N-acetylgalactosaminyltransferase gene by p40tax. Proc. Natl. Acad. Sci. USA, 90, 19721976 (1993).
  • 12
    ) Okada, M., Furukawa, K., Yamashiro, S., Yamada, Y., Haraguchi, M., Horibe, K., Kato, K., Tsuji, Y. and Furukawa, K. High expression of ganglioside α–2,8–sialyl-transferase (GD3 synthase) gene in adult T-cell leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer Res., 56, 28442848 (1996).
  • 13
    ) Cheresh, D. A., Rosenberg, J., Mujoo, K., Hirschowitz, L. and Reisfeld, R. A. Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res., 46, 51125118 (1986).
  • 14
    ) Dnistrian, A. M. and Schwartz, M. K. Lipid-bound sialic acid as a tumor marker. Ann. Clin. Lab. Sci., 13, 137142 (1983).
  • 15
    ) Sung, C. C., Pearl, D. K., Coons, S. W., Scheithauer, B. W., Johnson, P. C. and Yates, A. J. Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors. Cancer, 74, 30103022 (1994).
  • 16
    ) Nakamori, S., Furukawa, H., Hiratsuka, M., Iwanaga, T., Imaoka, S., Ishikawa, O., Kabuto, T., Sasaki, Y., Kameyama, M., Ishiguro, S. and Irimura, T. Expression of carbohydrate antigen sialyl Le(a): a new functional prognostic factor in gastric cancer. J. Clin. Oncol., 15, 816825 (1997).
  • 17
    ) Sung, C. C., Pearl, D. K., Coons, S. W., Scheithauer, B. W., Johnson, P. C., Zheng, M. and Yates, A. J. Correlation of ganglioside patterns of primary brain tumors with survival. Cancer, 75, 851859 (1995).
  • 18
    ) Lode, H. N., Handgretinger, R., Schuermann, U., Seitz, G., Klingebiel, T., Niethammer, D. and Beck, J. Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT-PCR and anti-ganglioside GD2 immunocytochemistry. Eur. J. Cancer, 33, 20242030 (1997).
  • 19
    ) Houghton, A. N., Mintzer, D., Cordon-Cardo, C., Welt, S., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M. R., Oettgen, H. F. and Old, L. J. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc. Natl. Acad. Sci. USA, 82, 12421246 (1985).
  • 20
    ) Irie, R. F. and Morton, D. L. Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc. Natl. Acad. Sci. USA, 83, 86948698 (1986).
  • 21
    ) Cheung, N. K., Cheung, I. Y., Canete, A., Yeh, S. J., Kushner, B., Bonilla, M. A., Heller, G. and Larson, S. M. Antibody response to murine anti-GD2 monoclonal antibodies: correlation with patient survival. Cancer Res., 54, 22282233 (1994).
  • 22
    ) Cheung, N. K., Kushner, B. H., Yeh, S. D. and Larson, S. M. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int. J. Oncol., 12, 12991306 (1998).
  • 23
    ) Pegram, M. and Slamon, D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol., 27, 1319 (2000).
  • 24
    ) Treon, S. P. and Anderson, K. C. The use of rituximab in the treatment of malignant and nonmalignant plasma cell disorders. Semin. Oncol., 27, 7985 (2000).
  • 25
    ) Dickman, S. Antibodies stage a comeback in cancer treatment. Science, 280, 11961197 (1998).
  • 26
    ) Cheresh, D. A., Pierschbacher, M. D., Herzig, M. A. and Mujoo, K. Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J. Cell Biol., 102, 688696 (1986).
  • 27
    ) Nakano, J., Yasui, H., Lloyd, K. O. and Muto, M. Biologic roles of gangliosides G (M3) and G (D3) in the attachment of human melanoma cells to extracellular matrix proteins. J. Investig. Dermatol. Symp. Proc., 4, 173176 (1999).
  • 28
    ) Dippold, W. G., Knuth, A. and Meyer Zum, B. K. H. Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3–ganglioside antibody. Cancer Res., 44, 806810 (1984).
  • 29
    ) Nakano, J., Raj, B. K., Asagami, C. and Lloyd, K. O. Human melanoma cell lines deficient in GD3 ganglioside expression exhibit altered growth and tumorigenic characteristics. J. Invest. Dermatol., 107, 543548 (1996).
  • 30
    ) Thurin, J., Thurin, M., Herlyn, M., Elder, D. E., Steplewski, Z., Clark, W. H., Jr. and Koprowski, H. GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett., 208, 1722 (1986).
  • 31
    ) Yoshida, S., Fukumoto, S., Kawaguchi, H., Sato, S., Ueda, R. and Furukawa, K. Ganglioside G (D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res., 61, 42444252 (2001).
  • 32
    ) Svennerholm, L. Chromatographic separation of human brain gangliosides. J. Neurochem., 10, 613623 (1963).
  • 33
    ) Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K. O., Shiku, H. and Furukawa, K. Isolation of GD3 synthase gene by expression cloning of GM3 α–2,8–sialyl-transferase cDNA using anti-GD2 monoclonal antibody. Proc. Natl. Acad. Sci. USA, 91, 1045510459 (1994).
  • 34
    ) Miyazaki, H., Fukumoto, S., Okada, M., Hasegawa, T. and Furukawa, K. Expression cloning of rat cDNA encoding UDP-galactose:GD2 β1,3–galactosyltransferase that determines the expression of GD1b/GM1/GA1. J. Biol. Chem., 272, 2479424799 (1997).
  • 35
    ) Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265275 (1951).
  • 36
    ) Hudson, P. J. Recombinant antibody constructs in cancer therapy. Curr. Opin. Immunol., 11, 548557 (1999).
  • 37
    ) Watanabe, T., Naito, M., Kokubu, N. and Tsuruo, T. Regression of established tumors expressing P-glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK–16 antibodies. J. Natl. Cancer Inst., 89, 512518 (1997).
  • 38
    ) Mizutani, Y., Bonavida, B., Koishihara, Y., Akamatsu, K., Ohsugi, Y. and Yoshida, O. Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum (II) by anti-interleukin 6 monoclonal antibody or anti-interleukin 6 receptor monoclonal antibody. Cancer Res., 55, 590596 (1995).
  • 39
    ) Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res., 3, 27032707 (1997).
  • 40
    ) Ciardiello, F., Bianco, R., Damiano, V., De Lorenzo, S., Pepe, S., De Placido, S., Fan, Z., Mendelsohn, J., Bianco, A. R. and Tortora, G. Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin. Cancer Res., 5, 909916 (1999).
  • 41
    ) Margolin, K., Gordon, M. S., Holmgren, E., Gaudreault, J., Novotny, W., Fyfe, G., Adelman, D., Stalter, S. and Breed, J. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol., 19, 851856 (2001).
  • 42
    ) Pegram, M. D. and Slamon, D. J. Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptorenhanced chemosensitivity. Semin. Oncol., 26, 8995 (1999).
  • 43
    ) Burris, H. A., 3rd. Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer. Semin. Oncol., 28, 3844 (2001).
  • 44
    ) Crown, J. P. The platinum agents: a role in breast cancer treatment Semin. Oncol., 28, 2837 (2001).
  • 45
    ) Agus, D. B., Bunn, P. A., Jr., Franklin, W., Garcia, M. and Ozols, R. F. HER–2/neu as a therapeutic target in nonsmall cell lung cancer, prostate cancer, and ovarian cancer. Semin. Oncol., 27, 5363 (2000).
  • 46
    ) Mizutani, Y., Okada, Y., Yoshida, O., Fukumoto, M. and Bonavida, B. Doxorubicin sensitizes human bladder carcinoma cells to Fas-mediated cytotoxicity. Cancer, 79, 11801189 (1997).
  • 47
    ) Pace, E., Melis, M., Siena, L., Bucchieri, F., Vignola, A. M., Profita, M., Gjomarkaj, M. and Bonsignore, G. Effects of gemcitabine on cell proliferation and apoptosis in non-small-cell lung cancer (NSCLC) cell lines. Cancer Chemother. Phamacol., 46, 467476 (2000).
  • 48
    ) Makin, G. and Hickman, J. A. Apotosis and cancer chemotherapy. Cell Tissue Res., 301, 143152 (2000).
  • 49
    ) Debatin, K. Activation of apoptosis pathways by anticancer treatment. Toxicol. Lett., 112113, 41–48 (2000).
  • 50
    ) Lowe, S. W. Cancer therapy and p53. Curr. Opin. Oncol., 7, 547553 (1995).
  • 51
    ) Fan, S., El-Deiry, W. S., Bae, I., Freeman, J., Jondle, D., Bhatia, K., Fornace, A. J., Jr., Magrath, I., Kohn, K. W. and O'Connor, P. M. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res., 54, 58245830 (1994).
  • 52
    ) Kanamori, Y., Kigawa, J., Minagawa, Y., Irie, T., Oishi, T., Shimada, M., Takahashi, M., Nakamura, T., Sato, K. and Terakawa, N. A newly developed adenovirus-mediated transfer of a wild-type p53 gene increases sensitivity to cis-diamminedichloroplatinum (II) in p53–deleted ovarian cancer cells. Eur. J. Cancer, 34, 18021806 (1998).
  • 53
    ) Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369, 156160 (1994).
  • 54
    ) Liu, Y., Gorospe, M., Yang, C. and Holbrook, N. J. Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP–1–dependent gene activation. J. Biol. Chem., 270, 83778380 (1995).
  • 55
    ) van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P. and Angel, P. ATF–2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBOJ., 14, 17981811 (1995).
  • 56
    ) Seimiya, H., Mashima, T., Toho, M. and Tsuruo, T. c-Jun NH2–terminal kinase-mediated activation of interleukin–1beta converting enzyme/CED–3–like protease during anti-cancer drug-induced apoptosis. J. Biol. Chem., 272, 46314636 (1997).
  • 57
    ) Houghton, A. N. and Scheinberg, D. A. Monoclonal antibody therapies—a ‘constant’ threat to cancer. Nat. Med., 6, 373374 (2000).