SEARCH

SEARCH BY CITATION

References

  • 1
    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 55104.
  • 2
    Salceda S, Caro J. Hypoxia-inducible factor-1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J Biol Chem 1997; 272: 226427.
  • 3
    Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95: 798792.
  • 4
    Sutter CH, Laughner E, Semenza GL. Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 2000; 97: 474853.
  • 5
    Guillemin K, Krasnow MA. The hypoxic response: huffing HIFing. Cell 1997; 89: 912.
  • 6
    Blancher C, Harris AL. The molecular basis of the hypoxia response pathway: tumor hypoxia as a therapy target. Cancer Metastasis Rev 1998; 17: 18794.
  • 7
    Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 6872.
  • 8
    Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 2000; 59: 4753.
  • 9
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 644965.
  • 10
    Dachs GU, Patterson AV, Firth JD et al. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3: 51520.
  • 11
    Richard DE, Berra E, Pouyssegur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 1999; 266: 71822.
  • 12
    Maxwell PH, Dachs GU, Gleadle JM et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94: 81049.
  • 13
    Ryan HE, Poloni M, McNulty W et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res 2000; 60: 40105.
  • 14
    Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol 2001; 28: 3641.
  • 15
    Zhong H, De Marzo AM, Laughner E et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 1999; 59: 58305.
  • 16
    Talks KL, Turley H, Gatter KC et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 41121.
  • 17
    Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 2000; 60: 46936.
  • 18
    Aebersold DM, Burri P, Beer KT et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001; 61: 29116.
  • 19
    Koukourakis MI, Giatromanolaki A, Sivridis E et al. Hypoxia inducible factor (HIF-1α and HIF-2α), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002; 53: 1192202.
  • 20
    Beasley NJ, Leek R, Alam M et al. Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 2002; 62: 24937.
  • 21
    Piret JP, Lecocq C, Toffoli S, Ninane N, Raes M, Michiels C. Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res 2004; 295: 3409.
  • 22
    Erler JT, Cawthorne CJ, Williams KJ et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 2004; 24: 287589.
  • 23
    Kuwana T, Newmeyer DD. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 2003; 15: 6919.
  • 24
    Sharpe JC, Arnoult D, Youle RJ. Control of mitochondrial permeability by Bcl-2 family members. Biochem Biophys Acta 2004; 1644: 10713.
  • 25
    Festjens N, Van Gurp M, Van Loo G, Saelens X, Vandenabeele P. Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta Haematol 2004; 111: 727.
  • 26
    Detta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 23141.
  • 27
    Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondial level. J Cell Biol 2000; 151: 48394.
  • 28
    Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 131821.
  • 29
    Yoneda K, Yamamoto T, Osaki T. p53- and p21-independent apoptosis of squamous cell carcinoma cells induced by 5-fluorouracil and radiation. Oral Oncol 1998; 34: 52937.
  • 30
    Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 90827.
  • 31
    Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 2001; 61: 666973.
  • 32
    Thakker GD, Hajjar DP, Muller WA, Rosengart TK. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem 1999; 274: 100027.
  • 33
    Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 1997; 272: 325217.
  • 34
    Minet E, Arnould T, Michel G et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 2000; 468: 538.
  • 35
    Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med 2001; 31: 84755.
  • 36
    Mottet D, Michel G, Renard P, Ninane N, Raes M, Michiels C. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol 2003; 194: 3044.
  • 37
    Zhong H, Chiles K, Feldser D et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells. Implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 15415.
  • 38
    Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 3639.
  • 39
    Alvarez-Tejado M, Alfranca A, Aragones J, Vara A, Landazuri MO, Del Peso L. Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem 2002; 277: 1350817.
  • 40
    Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 α nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 2002; 277: 1516270.
  • 41
    Mottet D, Dumont V, Deccache Y et al. Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J Biol Chem 2003; 278: 3127785.
  • 42
    Porter AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 1998; 17: 134352.